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Fig. 1: An overview of the interface for WeaVER, an open-source tool developed for supporting metorological analysis, shown
here visually relating multiple isocontour features across an ensemble using contour boxplots.

Abstract— Meteorologists process and analyze weather forecasts using visualization in order to examine the behaviors of and
relationships among weather features. In this design study conducted with meteorologists in decision support roles, we identified
and attempted to address two significant common challenges in weather visualization: the employment of inconsistent and often
ineffective visual encoding practices across a wide range of visualizations, and a lack of support for directly visualizing how different
weather features relate across an ensemble of possible forecast outcomes. In this work, we present a characterization of the problems
and data associated with meteorological forecasting, we propose a set of informed default encoding choices that integrate existing
meteorological conventions with effective visualization practice, and we extend a set of techniques as an initial step toward directly
visualizing the interactions of multiple features over an ensemble forecast. We discuss the integration of these contributions into a
functional prototype tool, and also reflect on the many practical challenges that arise when working with weather data.

Index Terms—Design study, weather, geographic/geospatial visualization, ensemble data.

1 INTRODUCTION

A wide variety of domains depend on weather predictions for making
critical decisions, such as wildfire response, avalanche prediction, and
hurricane evacuation. Meteorologists working in these domains make
predictions based on numerically simulated forecasts, the outputs of
which include many different variables and time points. Furthermore,
as with most numerical simulations, various sources of error lead to
inherent uncertainty in the resulting forecasts. To account for some of
the uncertainty, forecasts can use multiple simulations to sample the
space of possible outcomes, creating an ensemble of results for each
variable and time point.

Because the simulations are large and computationally expensive,
only a few large governmental and intergovernmental agencies run and
distribute the majority of the forecast simulations. The resulting data
is very large, on the order of hundreds of gigabytes for a single day’s
forecasts, which has fostered a prevalence of tools and third-party or-
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ganizations that create static visualizations of the forecasts for use and
distribution. The challenge for the meteorologists who use these vi-
sualizations is that these tools and third-party organizations produce
visualizations with vastly different visual conventions, many of which
go against well-known visualization principles, and seldom offer sup-
port for exploring the uncertainty in the simulations.

To better understand these challenges, we conducted a two-year de-
sign study that involved meteorologists in decision-making contexts
across a variety of application areas ranging from wildfire prediction
to air quality assessment. We identified two common visualization
challenges. The first challenge stems from meteorologists attempt-
ing to mentally integrate information from sets of visualizations with
inconsistent and even conflicting visual encodings. The second chal-
lenge is the current, limited support for working with ensemble fore-
casts, which includes no effective methods for the direct comparison
of multiple features across an ensemble.

In addressing these two challenges we provide several contribu-
tions: a characterization of both the problems and data associated with
meteorological forecasting, a concise treatment of which we were un-
able to locate in the existing body of visualization research; a data
driven formulation of informed, default encoding choices that in-
tegrate existing meteorological conventions with good visualization
principles; and, as a secondary contribution, the extension of state-of-
the-art-techniques for visualizing ensembles to enable the direct com-



parison of multiple meteorological features. We evaluated these con-
tributions with our collaborators by integrating them into WeaVER,
a proof-of-concept system for weather visualization encoding recom-
mendation packaged into an open-source tool for visualizing weather
forecasts, shown in Figure 1. Finally, we reflect on several challenges
we encountered working in the domain of meteorology and discuss
several pitfalls.

2 DESIGN PROCESS

Over the course of the project we worked closely with meteorologists
from a variety of domains. Our collaborators included: two meteorol-
ogists supporting resource allocation decisions for wildfire emergency
management in the southwest region of the United States; a meteorol-
ogist working with air quality simulations for Utah’s state-level regu-
latory Department of Air Quality; a meteorologist in the Science and
Technology Infusion Division of the National Weather Service; and
a professor in the Department of Atmospheric Sciences at the Uni-
versity of Utah who specializes in cold-weather mountain climatology
and runs a popular public facing blog about winter weather and ski
conditions along the Wasatch Front.

Our design process was heavily influenced both by Sedlmair et al.’s
nine-stage framework [31] and by the processes and recommendations
for human centered design in geo-visualization outlined by Lloyd and
Dykes [19]. We began with a series of contextual interviews where we
observed the daily workflows of several of our collaborators. These
formative interviews shaped our initial domain problem characteriza-
tion. Due to our lack of background knowledge in meteorology, we
sought assistance from the Atmospheric Sciences Department at the
University of Utah, which led us to several other collaborators. A se-
ries of additional interviews with these individuals led to insights that
added significantly to our understanding of the tasks and workflows of
meteorologists.

We then moved on to a prototyping phase that began with the par-
allel development of multiple wireframe prototypes. After internal re-
view, the designs from our parallel prototyping session were integrated
into a full scale paper prototype that we presented to our collabora-
tors for feedback. We then created additional digital prototypes that
focused separately on the ideas of informed, default encodings and di-
rectly visualizing multiple features across ensembles. An overview of
these wireframe, paper, and digital prototypes is included in Supple-
mental Materials. We subsequently presented the digital prototypes to
our collaborators in three separate feedback sessions. The feedback on
these prototypes was integrated into the development of WeaVER, the
open-source tool that we developed as a full-scale proof of concept for
evaluating our proposed ideas, described in Section 7. WeaVER was,
in turn, presented to our collaborators for additional tweaks and final
evaluation as we discuss in Section 8.

3 FOUNDATIONS

In this section we provide an overview of weather forecasts, as well as
the tasks and workflows of our collaborators in meteorology. We also
discuss the current role of visualization in these workflows, along with
the areas where improved visualization methods are needed.

3.1 Problem Characterization

In general, a weather forecast refers to one or more outputs of nu-
merical weather prediction simulations. The simulations are run us-
ing various models, parameterizations, input conditions and boundary
conditions in order to simulate different sets of variables over varying
geographical extents, predictive time frames, and grid resolutions. To
ensure that meteorologists have the most up to date information, many
of these simulations are run multiple times throughout the day.

There are two main types of forecasts: deterministic forecasts and
ensemble forecasts. Deterministic forecasts are the output of a single
simulation. Ensemble forecasts, on the other hand, are a collection
of two or more simulation outputs that cover overlapping geograph-
ical extents and predictive timeframes, but use different models, dif-
ferent parameterizations, or different initial or boundary conditions.
The simulations comprising an ensemble are generally run at lower

resolutions than their deterministic counterparts due to limited com-
putational resources. Because each simulation, or member, within an
ensemble represents a possible forecast outcome, the ensemble as a
whole can be thought of as sampling the space of possible forecast out-
comes, providing a mechanism for approximating uncertainty in the
simulation process. This uncertainty may be due to the propagation
of initial error through the simulation, the use of approximations in
modeling the underlying physical processes, or numerical error within
the computation itself. These various sources of error grow over the
predictive time frame, propagating to larger and larger scale features,
thereby increasing the divergence among different simulations [32].

Due to the associated computational complexity, many organiza-
tions that rely on forecasts have neither the time nor the resources
to run their own weather simulations. As such, the majority of the
weather forecast simulations used today are run by a small number
of large governmental and intergovernmental organizations such as
the United States’ National Oceanic and Atmospheric Administration
(NOAA) and the European Centre for Medium-Range Weather Fore-
casts (ECMWF) — we collectively refer to these organizations as gate-
keepers [31]. For the many meteorologists who rely primarily or solely
on the forecasts run and disseminated by these gatekeepers, predefined
choices of models, variables, and grids become limiting factors in all
weather predictions and decisions.

The workflow of most meteorologists centers around the tasks of lo-
cating and relating specific features. Features generally correspond to
events, trends, or boundaries: a cold front, a low pressure system, the
freezing point temperature boundary, etc. Decisions are rarely based
on a single feature in the data; rather, they are based on the intersection
of multiple features. The threshold for critical wildfire conditions, for
example, equates to surface temperatures above 60°F, surface relative
humidity under 20%, and sustained surface winds over 20 mph [33].
Meteorologists also rely heavily on experiential knowledge in making
judgements based on features. When a simulation’s resolution does
not accurately resolve mountainous terrain, for example, the result-
ing forecasts will fail to show major precipitation events; yet one of
our collaborators can often still accurately predict those precipitation
events. By looking at the same forecasts day after day, meteorologists
begin to recognize patterns in how the simulations’ biases relate to
their specific problems and begin to account for those biases in their
decision-making process.

We observed that meteorologists generally use visualizations in or-
der to understand the big-picture status of a forecast. Many meteo-
rological visualizations, however, fail to present the forecast data in
a way that enables effective visual comprehension of feature relation-
ships. As we will go on to discuss, this is largely due to the prob-
lematic usage of visual encodings, along with unsatisfactory methods
for relating features across ensembles. As such, meteorologists are
often forced look at a large number of visualizations to locate all the
features relevant to their current problem, mentally aggregate those
features, and then use that aggregated mental model to make their
judgements [35]. As one collaborator summarized, “Forecasters are
dealing with a firehose of data, and they need to be able to process it
fast.” Pattern recognition plays a critical role in this regard, but only if
an individual can look at a consistent set of visualizations over time.

While a number of different tools and systems exist for visualizing
forecast data, there are also many third-party organizations who take
the same data, derive additional data products, and release static visu-
alizations over the web. These visualizations are often created using
the same or similar tools to those meteorologists already have access
to. In some cases, however, these third-party visualizations provide
access to new or experimental research not yet integrated into avail-
able forecasting tools, such as derived probabilistic predictions for dry
lightning [12]. Other times the data has been post-processed or bias-
corrected to target specific meteorologists’ problems, as is the case
for a large number of visualizations generated by the Storm Predic-
tion Center in Norman, OK [6]. Sometimes the third-party visualiza-
tions are simply easier to use or more readily available outside the
office. Whatever the reason, bookmarks and browser tabs for access-
ing a combination of these static visualizations factor heavily into the
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Fig. 2: Examples of existing static forecast visualizations that show various meteorological conventions for encoding combinations of variables.

The images in 2a, 2d, and 2e are reproduced courtesy of various subsidiaries of NOAA and the US National Weather Service: the National Center

for Environmental Protection (NCEP), NCEP’s Environmental Modeling Center, and the Storm Prediction Center, respectively. The image in 2b is

reproduced courtesy of Unisys Weather, while the image in 2c is reproduced courtesy of the US National Center for Atmospheric Research (NCAR).

workflows of the majority of our collaborators.

As Figure 2 illustrates, different variables within a forecast are vi-
sualized using a variety of encodings. The visualizations often layer
multiple encodings to allow for the comparison of multiple variables
and their constituent features of interest. Unfortunately, when showing
multiple variables simultaneously, these visualizations often combine
encodings in problematic ways, as evidenced by the usage of color
in Figure 2c. Additionally, the static nature of the visualizations of-
ten leads to significant visual clutter, like in Figures 2a and 2d. An
expanded discussion of these issues is presented in Section 5.1.

The notion of visually relating features and feature relationships
is more complicated when dealing with ensembles. An ensemble of
possible simulated outcomes provides an ensemble of possible instan-
tiations for each feature of interest. Visualization methods for directly
examining the space of possible features across an ensemble are cur-
rently limited to looking at isocontour-based features. Moreover, these
visualization methods are ineffective for tasks that involve relating
multiple features. As such, meteorologists only examine the interac-
tions among multiple features across the ensemble indirectly, looking
at how the features relate under some derived-data transformation. The
transformations are usually statistical in nature: averaging the possible
outcomes, taking the maximum or minimum possible values, calculat-
ing the probability of an event based on how many ensemble members
predict it, etc. Unfortunately, these transformations often mask out-
liers, gradient based features, and edge cases that are otherwise sig-
nificant [33]. Additionally, the resulting derived forecasts often depict
physically impossible features and feature relationships.

3.2 Data Abstraction

Forecast simulations are multi-dimensional, and multivariate. Each
forecast simulation is a time-varying set of height layers, where each
height layer is a 2D grid with variable values at every grid point. Each
height layer may have tens to hundreds of variables. Ensemble fore-
casts can analogously be thought of as multivalued, with the set of
simulation members defining possible values for a particular variable
at a specific point in simulated space-time [29].

Notably, while a set of 2D height layers can be characterized as a
single 3D dataset, the meteorologists we spoke with generally do not
think about them as such. While the simulations do cover a continuous
3D extent, the height layers are far enough apart that any dependencies
between them are considered negligible.

A field refers to a particular variable at a particular height: a 2D

grid of generally scalar, but possibly vector, values. Our contextual
interviews and subsequent conversations indicated that, in practice, a
given meteorologist only cares about a subset of around 50 fields out
of the hundreds often available within a given forecast. Which 50
fields, however, ranges from meteorologist to meteorologist according
to their particular problems and prior experience. Meteorologists addi-
tionally incorporate many derived fields into their workflows. Derived
fields represent a mapping from a set of fields to a single field. This
mapping may combine multiple instances of the same field from dif-
ferent simulations, as would be required to calculate the average field
over an ensemble. Alternatively, the mapping may combine multiple
fields from a single simulation, as in the case of calculating the Haines
Index. The Haines Index takes values between two (low risk) and
six (high risk) indicating the potential for accelerated wildfire growth
based on temperature and dew point differences across various atmo-
spheric height layers [27]. For all of the derived fields we discuss,
values at different grid locations are treated as completely indepen-
dent. This notion of grid-location independence is neither a necessary
condition for a derived field, nor a reflection of the physical processes
being simulated. It is an artifact of how the meteorological community
computes derived quantities in practice.

A feature refers to a significant artifact, usually an event, trend, or
boundary, that can be located within a given field. For scalar fields,
features are generally visually represented by isocontours or gradi-
ents. For vector fields features generally correspond to topological
structures such as a source, sink, saddle-point, or closed orbit.

4 RELATED WORK

The related work for this paper loosely falls into two categories: work
that addresses the visualization of meteorological data and work that
addresses the visualization of ensembles and uncertainty.

4.1 Visualizing Weather

A number of software systems have been designed for the visual ex-
ploration of meteorological data in both operational and research en-
vironments [1, 2, 4, 9, 15, 17, 21, 23, 24, 29]. These systems provide
varying levels of user control for selecting which fields to visualize
and how to encode them. Some rely entirely on scripting-based in-
terfaces [1, 2, 15], as opposed to offering a graphical UI; some deal
solely with gridded information, such as forecasts, while others inte-
grate point-based observational data [1, 15], as well as real-time satel-
lite and radar data [4, 9, 21, 23]. As Table 1 illustrates, however, these



Tool 2D 3D Deterministic Single Feature
Direct Ensemble

Multiple Feature
Indirect Ensemble

Multiple Feature
Direct Ensemble

Movement toward
Informed Defaults

AWIPS [9, 21] • • • • •

Metview/
Magics++ [4] • • • •

GrADS [15] • • • •

IDV [23] • • • • • �

Vis5D [17] • • N N
Ensemble
Vis [29]

• • • • •

SimEnvVis [24] • • • ♦ •

FERRET [1] • • • • �

GMT [2] • • • ♦

Table 1: Overview of various visualization mechanisms in common meteorological systems.

•: full support

�: colormaps created for specific variables

N: small multiple 3D views only

♦: can theoretically visualize any pre-derived data using

available deterministic mechanisms

�: like ♦, but also supports a data aggregation operation

systems have done very little with either informed, default encodings
or the direct visualization of multiple features across an ensemble.

The majority of the aforementioned systems leave encoding choices
to users who lack training in visualization principles. So far, initial
steps towards addressing this issue have taken orthogonal approaches.
Unidata’s Integrated Data Viewer (IDV) [23] provides a set of color
map recommendations for different types of fields, though most ap-
pear to be spectral and ignore effective visualization practices. Potter
et al.’s Ensemble Vis framework, on the other hand, reuses a single set
of two sequential and two categorical color maps based on visualiza-
tion principles for all fields of interest [29]. Taking an entirely different
tack, Nocke et al.’s SimEnvVis allows for the creation of rules that as-
sign encodings based on field metadata and user preferences; however,
a user’s lack of training regarding visualization principles remains an
issue. Alternatively, Ware and Plumlee propose a set of perceptually
motivated design alternatives for encoding weather data [36].

There are also a number of websites that provide users with a range
of static forecast visualizations. The Short-Range Ensemble Forecast
(SREF) website run by the Storm Prediction Center [6] is one exam-
ple, but a list of others can be found in our Supplemental Materials.
The static visualizations provided on these websites are largely cre-
ated using tools or systems like those described at the beginning of
this section. The users of these web-based systems, however, exercise
even less control over which fields they can look at and no control over
how the information is encoded.

4.2 Uncertainty

A significant amount of work addresses the visualization of uncer-
tainty — Potter et al.’s taxonomy [28] contains a thorough overview
of the state-of-the-art approaches. In terms of research relevant to vi-
sualizing uncertainty in meteorological data, the early work focuses
primarily on uncertainty in Geospatial Information Systems. Work by
both Pang [25] and MacEachran [20] outline various issues and recom-
mendations with regards to the visualization of geospatial uncertainty,
while Thompson et al. present a typology for uncertainty in geospa-
tially referenced data for intelligence analysis [34].

Attempting to better address the needs of meteorologists, a num-
ber of papers focus on understanding uncertainty from simulation en-
sembles. Vis5D [17] employs small multiples as a way of looking at
multiple ensemble members, while SimEnvVis [24] explores various
comparative techniques for investigating differences among ensemble
members. EnsembleVis [29], on the other hand, enables the generation
of visual summaries for ensemble forecasts that specifically emphasize
the probabilistic characteristics of the ensemble. Additionally, Sanyal
et al.’s Noodles tool [30], Pöthkow et al.’s probabilistic marching cubes
technique [26], and Whittaker et al.’s contour boxplot technique [37]
present methods for directly summarizing ensembles of isocontours in
visualizations. None of this work, however, has addressed the task of
relating multiple features across an ensemble.

5 INFORMED DEFAULTS

Many meteorologists turn to visualization as a way to quickly locate
relevant weather features within the forecast data. These meteorol-
ogists often mentally integrate information from multiple visualiza-
tions, which make use of a wide range of encoding conventions. The
design flaws in many of these visualizations can lead to misinterpre-
tation, inaccuracy, and inefficiency, among other consequences [14].
In an attempt to address this issue, we present a set of informed, de-
fault encoding recommendations that integrate existing meteorological
conventions with visualization principles.

5.1 Understanding Meteorological Encoding Conventions

We collected representative samples of visualization products from a
variety of sources used extensively by our collaborators. In total, we
compiled 41 images representative of the encoding conventions used
by 9 different meteorological sources — we include these images in
the Supplemental Materials. This sampling was intended to be rep-
resentative rather than exhaustive, encompassing the most popularly
referenced visualization products along with those specifically refer-
enced by our collaborators. We coded these images based on the fore-
cast variables shown and the encoding channels used. Using these
codes, we then grouped the images based on their similarity.

In general, we found that visualizations generated by a given
source have consistencies, but those consistencies rarely extend across
sources. The encodings employed in these visualizations include
contours, color maps, texture maps, streamlines, glyphs, and wind
barbs [36]. Contours, color maps and wind barbs are favored heav-
ily, with contours and color maps showing up in 85% and 78% of
the samples, respectively, and wind barbs comprising over 80% of all
glyph usage. For two-thirds of the samples, either 2 or 3 fields are en-
coded in a single visualization, though we did find isolated examples
of attempts to encode up to 4 fields simultaneously. For both contours
and color maps, a range of common intervals exist for certain vari-
ables: relative humidity and probabilities usually step by 10 percent,
temperature usually steps by 3, 4, 5, or 10 degrees, and geopotential
heights usually step by 30, 40, 60, or 120 meters. Due to the static na-
ture of these images, a label is required for each connected component
of each contour in a given image. As a result, increasing the number
of contours in a given visualization, either by using a smaller interval
step-size or by layering additional fields, quickly leads to increasingly
cluttered visualizations like those in Figures 2a and 2d.

In terms of color usage, there are a number of problematic trends.
It is common for colored contours to be overlaid on top of color maps,
or for colored contours and color maps with transparent portions to be
overlaid on top of multi-colored backgrounds, both of which add dif-
ficulty to resolving features — this latter case is exemplified in Figure
2c. Additionally, rainbow color maps, which are widely considered
a poor choice by the visualization community [11], comprise nearly



(a) layering independent fields (b) mean and variation (c) probabilities

Fig. 3: Examples of visualizations generated by each of our three cases for informed defaults.

70% of the color maps in our sample set. We also noted multiple cases
of cyclical color map design, including the cyclical rainbow color map
used in Figure 2b.

There are other color trends, however, that do not violate visualiza-
tion principles. For example, meteorologists almost always use dis-
crete color maps, rather than continuous; in fact, our sample set did
not include a single continuous color map. As another example, when
a mean field is displayed in concert with a variational measure such
as standard deviation or spread for an ensemble, the variational met-
ric is virtually always color mapped and the mean overlaid as a set of
contours, as shown in Figure 2d — we encountered only one exam-
ple where this configuration was reversed. We also noted a handful of
trends in color use tied to specific variables. Geopotential heights are
almost never color mapped and usually shown as black contours, like
in Figures 2a and 2c. When color mapped, relative humidity is nearly
always represented using 3 shades of green, usually denoting the 70–
80, 80–90, and 90–100 percentage intervals, with the lower intervals
being entirely ignored; Figure 2c shows an example of this. When
relative humidity is contoured, on the other hand, isocontours are gen-
erated for every interval of 10 percent. The color map for temperature
is always a rainbow color map with blues on the low end and reds on
the high end, though we also noticed a secondary trend where tem-
perature is displayed using a colored contour scheme with the color
blue specifying values below freezing and red specifying values above
freezing, as seen in in Figures 2a and 2c. Additionally, while proba-
bility fields are usually encoded using either contours or a color map,
there were also notable examples, such as the one reproduced in Figure
2e, where the probabilities are dual encoded using both. The contours
provide a constant overview of the entire field, while the color map is
specifically used to highlight value intervals of significance.

5.2 Proposed Defaults

Based on the trends we observed, we propose the following set of in-
formed defaults. We outline three cases. The first involves the si-
multaneous display of independent fields. These may be original or
derived fields from either a deterministic or ensemble forecast. The
notion of dependence used here is based on whether the interpretation
of a given field necessarily depends on knowledge of some other field.
The only dependent fields that arise within the context of this work are
standard deviation fields derived from an ensemble, as a measure of
standard deviation is generally meaningless without the correspond-
ing mean. Thus, our second case involves the simultaneous display
of an ensemble-derived dependent variation field with its correspond-
ing mean field. Our third case involves the display of the uncalibrated
probability of a given event or condition derived from the ensemble of
predicted outcomes. The uncalibrated probability refers specifically
to the percentage of the ensemble members that predict the event or
condition of interest. It is important to distinguish this from the ac-
tual expected frequency of the condition or event, as most ensembles
underestimate the true range of possible forecast outcomes [32]. For
each of these three cases we have abstracted a recommended set of
encoding choices, examples of which can be seen in Figure 3.

For simultaneously displaying independent fields, we recommend
staying within combinations of three encoding choices: a base color
map, a set of contours, and a set of glyphs or texture map (though we
do not currently support texture maps in WeaVER). This set of encod-

ing choices allows for the simultaneous display of two 2D scalar fields
along with a third 2D field of either scalar or vector values. Ware and
Plumlee propose an alternative configuration that uses color, texture
with optional contour boundaries, and animation to encode a simi-
lar set of fields [36], however this configuration is a departure from
the conventions at the core of current meteorological visualizations.
Given that meteorologists, especially those in decision-making con-
texts, have significant training and experience using current meteoro-
logical conventions, we tried to incorporate those conventions as much
as possible while remaining within the bounds of accepted visualiza-
tion practices.

For the other two cases, our recommendations mirror existing me-
teorological convention. For the simultaneous display of an ensemble-
derived mean field with its dependent variation field, we recommend
a single combined choice that encodes the variation metric as a color
map and overlays the mean field using a set of contours. For encoding
the uncalibrated probabilities of a condition, we recommend a single
dual-encoded choice where value intervals of significance are high-
lighted by a color map, while all other value intervals are represented
only by contours. The notion of a condition used here may refer to
either a single individual condition (e.g. relative humidity less than 10
percent) or the joint condition of a set of individual conditions. While
multiple user choices may go into specifying a set of individual con-
ditions, that set still represents a single joint condition choice.

We additionally provide a set of recommendations of low-level en-
coding behaviors for specific variables or fields. For both the color
map and the contour intervals, the handful of trends discussed in Sec-
tion 5.1 represent reasonable choices. For variables without common
trends in interval spacing, we use spacings specified by our collabo-
rators. Wind barbs are evenly spaced to prevent intersection of the
glyphs, though other placement strategies may also be acceptable [10].

We propose a set of color maps for a number of variables, shown in
Figure 4. Aside from the categorical map for representing the Haines
index in Figure 4g, these color maps are designed to approximate per-
ceptually uniform steps in luminance. We do not claim these color
maps guarantee perceptually equivalent luminance steps, as that would
require a calibrated monitor, control over the ambient light in the view-
ing environment, etc. [18]. The color maps are instead defined in de-
vice dependent HSV space, but use a nonlinear function in order to
vary brightness in a way that creates convincingly uniform perceptual
steps. Initial versions of the color maps, which can be found in Sup-
plemental Materials, were generated algorithmically using a cube-root
approximation to the Munsell value scale in combination with linearly
varying hue and saturation. Additional hand-tweaking, however, was
still required to create the final proposals.

Integrating an interactive routine to approximate a monitor’s
gamma value, such as that outlined by Kindlmann et al. [18], would
allow for more accurate control of luminance variation across devices.
We wanted to ensure, however, that the color maps were specified such
that they could also be used in other meteorological tools.

While the proposed color maps cover similarly large portions of the
luminance spectrum, we specifically did not use the entire spectrum
in order to allow for grey values for both contours and wind barbs
that would remain distinguishable from the color mapped background
when overlaid. Based on color usage trends that we observed, we cre-
ated a green color map covering the 70%–100% value range for the



(a) (b) (c) (d) (e) (f) (g)

Fig. 4: Discrete and continuous colormap proposals for: (a) tem-
perature, (b) wind speed, (c) precipitation, (d) relative humidity, (e)
standard deviation, (f) probability, and (g) Haines index.

display of relative humidity and a diverging spectral color map for
temperature, as shown in Figures 4d and 4a. Also included in Figure 4
are separate, distinguishable color maps for other common variables:
accumulated precipitation, high wind speeds, ensemble standard devi-
ation, and ensemble probabilities. While these additional color maps
are based solely on principles of effective color usage [22], rather than
any meteorological convention, the unique color maps for each vari-
able within a system are meant to improve users’ efficiency in dealing
with multiple visualizations. With this goal in mind, the majority of
the color maps are defined on an absolute scale covering the range of
values taken by that variable across all height layers. The color map
for standard deviation is the notable exception, as meaningful thresh-
olds of uncertainty change for different variables.

While we recognize that our choice of a spectral color map for tem-
perature is generally considered a poor choice for univariate color map
design [11], there is a history of justified use of spectral color schemes
for visualizing weather [29, 36]. While hue does not have an inher-
ent perceptual ordering, its familiarity and widespread use have led
to an expected ordering within meteorology. This is strengthened by
matching the intuitive mappings that exist for certain colors in spec-
tral schemes (e.g. red is hot, blue is cold) [36]. By controlling for
luminance variation, the proposed spectral color map does not suf-
fer from the perceptual irregularities that traditionally plague spectral
schemes [11]. We employ a diverging luminance scheme in order to
emphasize the nature of the freezing point boundary as a critical cen-
ter point for temperature. Moreover, well-designed diverging spec-
tral schemes behave just as well as widely-accepted two-hue diverging
color schemes for modeling data distributions with a critical mid-range
value [13]. Given all this, we believe that spectral-nature alone is an
insufficient reason to go against one of the strongest meteorological
conventions that we encountered.

The low-level encoding behaviors for the variables presented in this
section do not comprise a comprehensive solution for meteorological
visualization, but we believe they represent a reasonable solution for
some portion of the meteorological community. Our early interviews
indicated that most meteorologists refer to only 50 or so fields and, in
the case of our collaborators, those fields only covered a handful of
different variables. This made the specification of unique color maps
on a per-variable basis possible for our prototype. Given the large
number of variables present in forecasts, however, having separate,
distinguishable, absolute color scales for every possible variable will
never be feasible. Similarly, while our diverging spectral color scheme
for temperature results in clear visual differences at intervals of ten or
even five degrees, if our collaborators had needed to be able to resolve
steps of three degrees, the luminance differences become too small
for smoothly varying hue and saturation to result in sufficient visual
differences. As such, it is important to remember that enabling effec-
tive defaults will always require understanding the needs of the target
users. The specifications we have outlined here are simply one possi-
ble configuration that results in effective visualizations for the majority

of the cases handled by our collaborators.

6 ENSEMBLES OF FEATURES

Understanding the variability and associations among features across
ensembles is often critical to decision-making. This is especially true
in areas such as wildfire emergency management, which rely on fore-
casts multiple days into the future when the forecasts remain incred-
ibly uncertain. Many meteorologists rely heavily on visualization to
develop this understanding, yet no existing visualization methods al-
low users to effectively explore the variability of feature relationships
across an ensemble. Given that most decisions in meteorology are
based on the intersection of multiple features, this represents a major
gap in visualization’s current support for meteorological tasks.

In meteorology, the only conventional technique for directly exam-
ining the distribution of behaviors for a given feature across an en-
semble is the use of spaghetti plots. Spaghetti plots display the set
of isocontours associated with a specific value, one for each ensem-
ble member, within the same, generally static plot. Color is routinely
used to distinguish which ensemble member a particular contour is de-
rived from. Spaghetti plots for multiple features, especially intersect-
ing or overlapping features, are rarely overlaid within visualizations,
because the results do not effectively present the range of feature re-
lationships in the ensemble. If color is used on a per-member basis,
visually separating overlapping or intersecting contour sets into their
respective features becomes incredibly difficult. Alternatively, when
color is used to explicitly differentiate feature contour sets, it becomes
nearly impossible to pick out the contours associated with a particular
ensemble-member. These problems are compounded as the number of
ensemble members or the number different features increases. In both
cases, picking distinguishable colors becomes more challenging and
the occlusion of contours by one another, regardless of which feature
they belong to, becomes increasingly problematic.

While the use of small multiples for each ensemble member in
Vis5D [17] represents one possible step towards addressing these de-
ficiencies, the idea has never been generalized back to 2D plots. We
opted for a different approach, developing a modified formulation of
the spaghetti plot technique that uses interactive highlighting as the
primary mechanism for distinguishing between members. We refer
to these modified spaghetti plots as interactive spaghetti plots. As
shown in Figure 5a, this formulation frees up the color encoding chan-
nel, allowing the use of color to differentiate and enable direct compar-
isons among the distributions of multiple isocontour features within a
single plot. It also mitigates contour distinguishability and occlusion
issues by bringing the highlighted contour(s) to the front of the view
and decreasing the visual saliency of other features’ contours. Users
are able to look at multiple features simultaneously and interactively
highlight contour sets at both the member and feature level. This sup-
ports a variety of both exploratory and investigatory tasks.

Even with interactive highlighting, spaghetti plots still do not scale
well, quickly becoming visually cluttered. Given conversations with
our collaborators heralding the advent of super ensembles, ensembles
with hundreds of members, we also wanted to provide users with a
technique that could scale. To this end, we integrated Whitaker et
al.’s contour boxplots [37] as a state-of-the-art encoding technique
that directly summarizes an ensemble of isocontour features using a
boxplot-like summarization of a set of 2D contours.

There are a number of benefits to using contour boxplots for si-
multaneously visualizing multiple isocontour based feature sets. Be-
ing analogous to box-and-whisker plots, they provide a commonly
understood statistical framework for summarizing a distribution of
isocontour-based features across the ensemble. Because contour box-
plots were motivated in part by the idea of aggregation preserving
shape, the characteristic details of physically plausible features are
still present in the summarizations, which is often not the case for the
corresponding features derived using the ensemble-mean. Moreover,
contour boxplots are scalable as their visual representation remains
consistent for any arbitrary number of ensemble members.

Like with the interactive spaghetti plots, we use a modified for-
mulation of interactive contour boxplots. Color is, again, used to



(a) interactive spaghetti plots

(b) interactive contour boxplots

Fig. 5: The simultaneous display of three isocontour features using
modified ensemble visualization techniques.

differentiate between the summarizations of different features over the
ensemble, as shown in Figure 5b. We duplicate the functionality for
feature-level highlighting, bringing that feature’s contour boxplot to
the front of the view and decreasing the visual saliency of any other
contour boxplots in the display, mitigating distinguishability and oc-
clusion issues. Additionally, we allow users to query and highlight
contours from the ensemble on a per-member basis, thereby retaining
the capability for interactive exploration of the entire distribution of
feature relationships across the ensemble.

While we chose to limit users to looking at up to three features
simultaneously, the interactive mechanisms we have outlined could
allow for the simultaneous inclusion of a larger number of features in
a single view. The added benefit to simultaneously visualizing a fourth
or even fifth feature, however, is unclear, when users are provided with
a mechanism for easily swapping out features.

7 WEAVER

In this section, we provide an overview of WeaVER, an open-source
tool developed to test our informed defaults and extended ensemble
visualization techniques. WeaVER is not intended to be a fully vi-
able alternative to current operational forecasting tools; rather, it is a
proof-of-concept, designed to allow our collaborators to evaluate the
proposed ideas.

7.1 Data Processing

WeaVER is designed to visualize NCEP’s SREF (Short-Range En-
semble Forecast), which currently contains 21 member simulations:
7 different sets of initial conditions run over 3 models. The simula-
tion is run 4 times per day (at 03, 09, 15, and 21 UTC) and includes
predictions at 3-hour intervals out to 87 hours into the future. We
use the version of the SREF run on NCEP’s 212 Grid [8], which is a
Lambert Conic Conformal grid over the continental United States with
approximately 40 km grid spacing. The forecast data is retrieved from
the NOAA Operational Model Archive and Distribution System (NO-
MADS) server (nomads.ncep.noaa.gov) where it is released in
the binary GRIB2 [8] format. The wgrib2 command line utility [7],
which is made publicly available by NCEP’s Climate Prediction Cen-
ter, is used to parse the data into a csv format for preprocessing.

A fairly significant amount of data preprocessing is required for
WeaVER to achieve interactive rates. We generate a number of derived
fields, such as the Haines index, for each ensemble member, along
with various statistical derived fields (max, min, mean, and standard
derivation) across the ensemble. We also precompute the statistical

quantities required to generate interactive contour boxplots for various
isovalues. Additionally, we derive a number of condition fields for cal-
culating the uncalibrated probabilities of arbitrary joint conditions on
the fly. Because an individual condition applied to a single field results
in a boolean value at each grid point, we can concisely represent a con-
dition applied to an ensemble of fields as a bit-set at each grid point.
This reduces the computation of both arbitrary joint conditions and un-
calibrated probabilities to a small number of per grid-point operations.
The bit-set representing any joint condition can be computed using a
series of bitwise AND (&) operations, while calculating the uncali-
brated probability simply requires dividing the Hamming weight of a
bit-set by the total number of ensemble members.

7.2 System Overview

WeaVER consists of five interchangeable views: a deterministic view,
an ensemble statistic (stat) view, an ensemble mean and standard de-
viation (mnsd) view , an ensemble probability view, and a direct en-
semble view. The deterministic and stat views both handle layering
of multiple independent fields, the first of the three cases discussed
in Section 5.2. The ensemble mnsd and probability views handle the
second and third cases, respectively. The direct ensemble view, on the
other hand, allows users to switch back and forth between interactive
spaghetti plots and interactive contour boxplot summarizations using
the mechanisms described in Section 6. The specific fields, isovalues,
and conditions supported across these views were explicitly requested
by our collaborators.

Across all five views, fields may be dragged from a library on the
right-hand side and dropped onto various encoding targets at the top
of the view, as illustrated in Figure 1. The currently configured vi-
sualization is automatically updated according to the user’s choices.
Mouseover of any of the drop targets reduces the saliency of the the
other encodings in the visualization. When color maps and contours
are controlled by the same layer (as in the ensemble mnsd and prob-
ability views), the visual saliency of the contours is reduced in favor
of showing the color map more clearly. In all views, a tab-like mecha-
nism allows users to create and quickly switch back and forth between
multiple configured visualizations by either using the GUI interface or
the numeric keys on the keyboard. Every view also offers indepen-
dent time manipulation through animation, a slider-based interface,
and forward or backward time stepping using either the GUI interface
or the arrow keys on the keyboard. We include a video overview of the
interactive features in Supplemental Materials.

Contrary to meteorological convention, we take a detail-on-demand
approach to contours labels. There are no labels on the contours by
default; rather, labels appear on mouse-over. This action simultane-
ously highlights the full isocontour, which is especially helpful for
contours with multiple connected components. Clicking when a con-
tour is highlighted creates a persistent sticky label that moves with the
contour across time steps. At any time a user can reposition a sticky
label along the contour by dragging, or delete it by double clicking.
Limiting the labels to those requested by the user not only reduces
clutter but also reduces the number of targets for visual search.

7.3 Implementation

All of the data fetch and preprocessing code was implemented using a
combination of bash scripts and C++ programs that have been tested
and run on both Mac and Linux. This code has several dependencies:
we use wgrib2 [7] to transform the data from its original binary GRIB2
format, and the contour boxplot implementation relies on ITK [3].

WeaVER itself is implemented entirely in Processing [5]. The re-
sulting Java application has similarly been tested and runs on both
Mac and Linux. We are making the source code for WeaVER pub-
licly available at http://www.sci.utah.edu/˜samquinan/
software/WeaVER/. Specifications of the proposed default color
maps are included within this source code, along with both example
preprocessed data and the data processing code.

We note that the current handling of geographic projection within
WeaVER is an approximation of a Lambert Conic Conformal projec-
tion. As NCEP’s SREF is run on a Lambert Conic Conformal grid,

nomads.ncep.noaa.gov
http://www.sci.utah.edu/~samquinan/software/WeaVER/
http://www.sci.utah.edu/~samquinan/software/WeaVER/


we found that treating the forecast data as an equidistant grid overlaid
on top of a pre-projected Lambert Conic Conformal map provided a
sufficient visual approximation to the proper projection.

Additionally, our design decisions to use the 40 km resolution ver-
sion of the SREF as well as to visualize the forecast over the entire
continental US were based specifically on needs of our collaborators.
In general, meteorological phenomena exist at a range of different ge-
ographic scales, ranging anywhere from under a single kilometer to
thousands of kilometers. As such, the appropriate geographic scale
for visualizing weather data depends both on the scale of the features
of interest and on the resolution of the underlying forecast.

8 VALIDATION

We validated WeaVER through a series of semistructured interviews
with our collaborators. A set of initial interviews were conducted in
which we elicited feedback from various collaborators after walking
them through a full demo of WeaVER. We additionally provided cus-
tom installations of the software for an extended evaluation period to
our two collaborators working in wildfire prediction, allowing them to
evaluate the tool in the context of their work environment. We pro-
vide a description of how one of our collaborators used WeaVER with
historical forecast data, as well as informal feedback from our other
collaborators.

8.1 The Diego Fire

For one of our wildfire prediction collaborators, we supplied archived
forecasts from three mornings leading up to the Diego fire, a lighting-
strike fire that began in northern New Mexico during June, 2014 —
our collaborator requested these specific forecasts in order to retrace
his predictions of the Diego fire using WeaVER. He began by investi-
gating the forecasts through the deterministic and stat views in order
to gain a sense of the big picture atmospheric conditions over the fore-
casts. He was particularly excited about the ability to easily create
visualizations with combinations of fields tailored to his own prob-
lems and preferences. He also noted that the resulting visualizations
were more visually appealing and easier to read than what he usually
looks at. Using these views he was able to determine that the fore-
casts showed the expected signals for a threat of a lighting-started fire:
moisture, indicating lighting potential, on the front end of the fore-
casts, followed by windy, dry, unstable conditions for a day or so after.

After gaining a sense of the big picture three days out, our collabo-
rator began investigating the forecasts using the direct ensemble view.
He stated that he needed a sense of the spread or variation across the
ensemble, but more importantly, he also needed to be able to under-
stand how that variation differs from a particular model or member.
He explained that organizations such as the National Weather Service
still key their recommendations off a deterministic forecast, so un-
derstanding how the rest of the ensemble compares to that particular
member is incredibly important. As such, he appreciated being able
to interactively highlight a particular member from the ensemble. He
was also particularly impressed by the contour boxplot summariza-
tions. He stated that, while it would take training for forecasters to
understand exactly what they are looking at, the contour boxplots pro-
vide the same visual cues of the forecast as spaghetti plots, but much
more quickly and concisely. When pressed to look at multiple features
simultaneously, our collaborator noted that he could see expected be-
haviors and interactions. He also noted that interactive spaghetti plots
had significantly decreased utility compared to the interactive contour
boxplots for contour-sets generated from non-well-behaved fields such
as the Haines Index.

Finally, our collaborator looked at the probability view in order to
determine which areas had a high likelihood of a critical combination
of dry, windy, and unstable conditions in the latter portions of the fore-
cast. As we have reproduced in Figure 6, the combined condition of
surface temperatures greater than 60° F, surface wind speeds greater
than 20 mph, and a Haines index of 5 or greater highlighted the area
over northern New Mexico as favorable for fire spread after lighting
ignition. Our collaborator noted that this highlighted area, which he
would have been worried about, is where the Diego fire originated.

Fig. 6: The ensemble-derived probability of conditions favorable for
wildfire growth forecasted during the time frame of the Diego fire out-
break, highlighting northern New Mexico where the fire originated.

8.2 Informal Feedback

We also received a significant amount of supporting feedback from
the interviews with our other collaborators. In general, the addition
of interactivity was well-received. Our collaborators commented that
it was straight-forward to create a wide variety of views, and that the
sticky labels and interactive highlighting were a significant improve-
ment over the traditional static visualizations. Several of our collabo-
rators noted that in existing tools they must either choose to label every
contour or none, which leaves them in a dilemma as they either have
to obscure information in order to provide context or forego context
entirely. The sticky labels and interactive highlighting, alternatively,
made contour labels visible only where needed.

We received multiple independent confirmations of the meteoro-
logical encoding conventions we derived in Section 5.1. Several of
our collaborators commented that WeaVER’s informed defaults high-
light the fact that effective color usage is something that forecasters
generally struggle with. They also noted, however, that some of the
meteorological conventions encoded in the informed defaults were not
always sufficient for their specific problems. For example, in wild-
fire prediction low relative humidity is the primary concern, making
a color map highlighting the 70%–100% value range, largely useless.
Similarly, while our default temperature increments of 5°C are fine for
an overview, when forecasting the rain-snow transition line for winter
weather predictions, meteorologists need to see a rapid change local-
ized around 0°C with half degree increments.

According to our collaborators, interactive highlighting was the pri-
mary key to understanding feature relationships in both the interactive
spaghetti plot and interactive contour boxplot techniques. They were
particularly intrigued by contour boxplots as this visualization pro-
vides a fundamentally different way to get at the statistics or uncer-
tainty of a feature’s behavior across the ensemble. One collaborator
observed how quantile bands can immediately indicate that half of an
ensemble’s members are located within a specific geographic region,
an observation that would have required him to count individual mem-
bers in a spaghetti plot. The collaborator also noted that the latter pro-
cedure simply does not scale, stating that scalability is becoming in-
creasingly important as the number of ensemble members is expected
to increase by an order of magnitude over the next couple decades.

9 DISCUSSION

The feedback from our collaborators indicates that our informed de-
faults were largely a success. Provided with simple, transparent visu-
alization encoding choices, our collaborators were able to interactively
generate a wide range of effective visualizations tailored to a variety of
their own needs and problems. Limiting the user choices to effective
combinations of encodings and specifying low-level behaviors regard-
ing color usage and contour spacing at the system level resulted in the
users’ visualizations maintaining several meteorological conventions,
while widely being considered easier to read. Labels do not clutter the
view, masking important features; rather, meteorologists can interac-
tively place labels exactly where needed based on the current context,
regardless of how that context shifts.

The feedback regarding both interactive spaghetti plots and inter-
active contour boxplots was more mixed. Interactivity was the key to



enabling the exploration of feature relationships across the ensemble;
however, not in the way that we had anticipated. We figured that inter-
activity would alleviate differentiation and occlusion issues, but that
even statically, when those issues still exist, both techniques would
convey some understanding of the distribution of feature relationships.
Instead, interactively highlighting the relationships for each ensemble
member did a better job showing the range of feature interactions than
the static display of either technique. Additionally, interactive high-
lighting allows users to efficiently compare the behavior of a given
member to the rest of the ensemble, which turns out to be a critical
task for meteorologists who need to be able to resolve their own pre-
dictions against the recommendations of others. Both techniques offer
a clear improvement over standard spaghetti plots with regards to re-
lating multiple uncertain features.

Our feedback also suggests that contour boxplots generally repre-
sent an improvement over spaghetti plots. Contour boxplots can show
physically meaningful statistical variation within the spread of features
in a simpler and more concise manner, improving forecasting speed.
They can also create meaningful summaries for more complex fields,
such as the Haines index, where a lack of grouping among the contours
makes it extremely difficult to visually extract a meaningful summary
from spaghetti plots. Additionally, contour boxplots are significantly
more scalable, which will likely become important in the future.

That said, there were several aspects of our evaluation which were
not particularly successful. For reasons we discuss in Section 10, we
were unable provide several of our collaborators with their preferred
forecast. Additionally, WeaVER does not support investigating en-
sembles of non-isocontour features, such as cold fronts. These lim-
itations forced our collaborators to make judgements out of context
regarding the efficacy of WeaVER.

More generally, our evaluation of informed defaults suffers from a
mismatched scope between our designs and validation. We designed
the informed defaults using general meteorological conventions in the
hope that they would be applicable to a wide range of meteorologists.
We then attempted to validate them with a relatively small set of me-
teorologists with differing needs and problems. Unsurprisingly, our
low-level encoding choices were not always deemed appropriate by
all our collaborators. Several alternative options exist. One option,
common in design studies, would be to gear the default encoding be-
haviors to a specific subset of meteorologists, such as those forecasting
wildfires in the southwestern US. Another option would be to provide
users with the ability to interactively modify low-level encoding be-
haviors in order to support a wider range tasks. The first option re-
duces the generalizability of the informed defaults, while the second
option provides the opportunity to create increasingly ineffective vi-
sualizations. Neither alternative represents a best-case scenario. This
raises an interesting question: what is the proper way to design for a
set of experts who have similar goals but individualized processes and
domains? From an evaluation standpoint, such a design may require a
new model for validation.

10 CHALLENGES WORKING WITH WEATHER DATA

A number of challenges and hurdles made this design study more dif-
ficult than we initially anticipated. Here we reflect on a number of
these issues to provide guidance for others working with meteorologi-
cal data in the future.

Because our collaborators were purely consumers of meteorologi-
cal visualizations, it was difficult for us to get direct answers about how
existing visualizations were created. For example, confirming that the
data processing for derived fields assumes grid-location independence
required going through multiple levels of contacts. Similarly, none
of our collaborators could answer our questions regarding geographic
projection or the smoothing and down-sampling of forecast data. As
a result, there were certain critical complexities that it took us a very
long time to understand.

Of these complexities, we spent significant time understanding the
issues with geographic projections. Because NCEP’s grids use a non-
standard geodetic datum [8], we needed to understand what issues un-
derly simultaneously projecting simulations and maps based on dif-

ferent geodetic data. While there are errors that arise from simply
modifying the projection equations to use different geodetic data, we
were eventually able to confirm that these differences are primarily
significant when dealing with high resolution local-scale simulations.
Additionally, despite the prevalence of interpolated contours and color
maps, it remains unclear both how the associated latitude and lon-
gitude values needed for projection should be interpolated and how
existing tools are interpolating those values in practice. For visualiza-
tions designed for deployment in decision-making environments, these
sorts of considerations need to be accounted for.

As another example, only one of our collaborators was aware that
many calculations of the uncalibrated probabilities of joint conditions
over an ensemble assume the individual conditions are independent.
As the individual conditions are derived from the same ensemble, how-
ever, this assumption is not only unfounded but generally misleading.
While the resulting differences in predicted probability at a given grid
point can be fairly large, we generally found fairly subtle differences
when visualizing the entire field. Still, such a disconnect between the
data presented in visualizations that meteorologists look at and the me-
teorologists’ interpretation of that data is problematic.

We also ran into a number of practical and engineering challenges
that forced us to scale back our designs. The scope of the forecast data
was significantly greater than we anticipated and initially designed for,
and it is only going to expand in the future. Luckily, related work on
climatological systems [38] could offer insight into dealing with this
data increase. Additionally, internet connectivity issues and a lack of
install permissions in several of our collaborators’ work offices be-
came non-trivial design hurdles.

We also experienced major issues getting the data desired by our
collaborators. Several of our collaborators primarily look at long-
range ensembles, such as the Global Ensemble Forecast System
(GEFS) ensemble. While the GEFS is both run and used internally
by the National Weather Service at a 40 km resolution [16], it is only
made publicly available at less than half that resolution. This forced
us to test WeaVER with the SREF, which does not provide significant
enough lead times for many of our collaborators’ decisions. More-
over, a lack of public research archives for the SREF made it difficult
to track down meaningful data for our collaborators to look at when
eliciting feedback during their off-seasons.

11 CONCLUSIONS AND FUTURE WORK

In this work we present a characterization of both the problems and
data associated with meteorological forecasting. We outline a system
for informed defaults that allow meteorologists without visualization
expertise to generate a wide variety of effective visualizations based on
current meteorological conventions and visualization principles. We
also extend state-of-the-art visualization techniques in order to allow
users to effectively relate multiple isocontour features. As a proof-of-
concept for these ideas we present WeaVER, an open-source tool for
interactively visualizing weather forecasts.

As future work we are interested in conducting a formal evaluation
of both interactive contour boxplots and interactive spaghetti plots as
mechanisms for looking at multiple isocontour based features simul-
taneously. We are also interested in investigating how to design a user
study that can account for highly individualized analysis processes like
those found in the meteorological community. Additionally, there re-
mains no current visualization methods that enable the direct visual-
ization or comparison of non-isocontour based features across an en-
semble, providing another interesting avenue for future work.
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