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Abstract In this paper we describe a general purpose,
graphics processing unit (GP-GPU)-based approach for sol-
ving partial differential equations (PDEs) within advection–
reaction–diffusion models. The GP-GPU-based approach
provides a platform for solving PDEs in parallel and can
thus significantly reduce solution times over traditional CPU
implementations. This allows for a more efficient exploration
of various advection–reaction–diffusion models, as well as,
the parameters that govern them. Although the GPU does
impose limitations on the size and accuracy of computa-
tions, the PDEs describing the advection–reaction–diffusion
models of interest to us fit comfortably within these
constraints. Furthermore, the GPU technology continues to
rapidly increase in speed, memory, and precision, thus
applying these techniques to larger systems should be pos-
sible in the future. We chose to solve the PDEs using two
numerical approaches: for the diffusion, a first-order expli-
cit forward Euler solution and a semi-implicit second order
Crank–Nicholson solution; and, for the advection and reac-
tion, a first-order explicit solution. The goal of this work is
to provide motivation and guidance to the application scien-
tist interested in exploring the use of the GP-GPU compu-
tational framework in the course of their research. In this
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paper, we present a rigorous comparison of our GPU-based
advection–reaction–diffusion code model with a CPU-based
analog, finding that the GPU model out-performs the CPU
implementation in one-to-one comparisons.

1 Introduction

Advection–reaction–diffusion has been widely applied to
solve transport chemistry problems in scientific disciplines
ranging from atmospheric studies [28], through medical
science [29], to chemotaxis [12]. Turing’s original paper
published in 1952, “The chemical theory of morphogene-
sis”, is the best-known discussion [27]. In this paper, Turing
describes a system that both reacts and diffuses, reaching
(under certain circumstances) a dynamic equilibrium where
a stable spot-like pattern forms. Turing’s spot pattern has
been widely replicated because of its simplicity and ease of
implementation. Over the years, this work has been expan-
ded in a variety of fields by Belousov, Prigogine, Zhabo-
tinsky, Mienhart, Gray-Scott, FitzHugh-Nagumo, and many
others [9].

Our goal in studying advection–reaction–diffusion models
is to create spatio-temporal patterns that can be used for tex-
ture synthesis [24] and the visualization of vector fields [23].
We also want to create a system that can be used by chemists
in their analysis of reaction-diffusion models, such as those
being investigated in [32]. Figure 1 provides examples of
some of the patterns formed using reaction-diffusion models
that meet these goals. Our research focuses on a class of
advection–reaction–diffusion models that can be computed
using finite difference techniques, and that can also be sol-
ved using relatively simple first and second order numerical
integration techniques, such as a forward-Euler or Crank–
Nicholson.
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Fig. 1 Three examples of reaction-diffusion patterns for texture syn-
thesis (left), vector field visualization (center), and nonlinear chemical
dynamics (right)

There are numerous characteristics of the advection–
reaction–diffusions models that make analysis difficult. One
such property is the nonlinearity of the reaction functions,
which cause the tuning of the parameter values that drive
the models toward stable pattern formation difficult. Another
challenging characteristic is the sensitivity of the numerical
techniques to these tunable parameters. For instance, what
begins as a stable numerical integration may itself become
unstable, forcing the researcher to restart the simulation using
different integration parameters. Even when a researcher has
successfully adjusted all of the necessary parameters, sol-
ving the associated PDEs can be time consuming. All of
these challenges taken together have led us to seek a system
that will allow a researcher to easily change parameters and
quickly solve a series of PDEs in order to more effectively
ask what if questions.

To create an interactive advection–reaction–diffusion sys-
tem, our research focuses on significantly reducing the PDE
solution time. Researchers have traditionally taken advantage
of the finite difference discretization to solve PDEs in one of
two ways in order to achieve such computational accelera-
tions: either in parallel on multiple processors using the mes-
sage passing interface (MPI) or parallel compilers, such as
F90; or through multi-threaded methods on shared memory
architectures.

1.1 Graphics processing units for general processing

More recently, researchers seeking computational accele-
rations have turned to Graphic Processing Units (GPUs).
Similar to the math co-processors of yesterday, GPUs are spe-
cialized add-on hardware that can be used to accelerate spe-
cific graphics-related operations. GPUs are parallelized and
currently operate on up to 128 single-instruction-multiple-
data (SIMD) instructions (the exact number is proprietary),
providing a parallel desktop work environment for users of
Linux, OS X, and Windows. Furthermore, the speed increase
of each new generation of GPUs is out-pacing Moore’s Law,
one standard measure of performance increase of CPUs.
These reasons have led GPUs to become popular for general
parallel computing [19].

The conveniences and advantages of using a GPU, howe-
ver, do not come without a cost. GPUs require researchers to
think outside their normal paradigms because the hardware
is optimized specifically for computer graphics operations
rather than for general purpose processing. Thus, researchers
using GPUs for general processing (GP-GPU) must unders-
tand the graphics processing pipeline (i.e. OpenGL [31]), and
how to adapt it for general processing [19].

The GPU further differs from the math co-processor in
that it works autonomously from the CPU. As such, the
data must be packaged up and specialized computational
algorithms written before shipping these pieces off to the
GPU for processing. Although there exists high level coding
languages that can help in these tasks, such as the OpenGL
shading language [4], Cg (C for graphics) [10], and
Direct3D’s HLSL [2], a graphics API must still be used
for handling the data, such as OpenGL [31] or Direct3D.
For our implementation we have chosen to use the OpenGL
and Cg APIs because they offer portability to multiple plat-
forms, unlike Direct3D which is available only under Win-
dows. At the same time, there has been considerable research
into streaming programming languages for the GPU, such
as Brook [1], Scout [21], Sh [20], and Shallows [5] that
attempt to hide the graphics pipeline altogether. However,
at the time of this writing, these new languages are either
not publicly available (Scout), are experimental (Brook and
Shallows), or are no longer being supported and being
replaced with a commercial product (Sh). There is also
NVIDIA’s recently announced compute unified device
architecture (CUDA) technology, which provides a “C” like
development environment [3].

Another drawback to using the GPU for general purpose
processing is the limited memory and the floating point pre-
cision currently available on the hardware. Today’s commo-
dity level GPUs have at most 512MB of memory and only
support up to 32-bit non-IEEE floating point precision data
(64 bit precision has been announced by some manufactu-
rers but is not yet available). While these constraints make
the GPU not yet practical for solving large-scale, highly pre-
cise engineering simulations, the problems typically inves-
tigated by scientists exploring advection–reaction–diffusion
models, such as [32], fit well within the current GPU capa-
bilities. These computations provide stable solutions in the
Lyapunov-sense [25]—that is, under small amounts of noise
the patterns remain the same. Also, advection–reaction–
diffusion problems are second-order PDEs, making them
prototypical of parabolic (diffusion dominant) and hyperbo-
lic (advection dominant) PDEs.

Thus, advection–reaction–diffusion problems provide an
ideal test bed for comparing and contrasting CPU- and GPU-
based implementations for real-world scientific problems.
The computational experiments described in this paper also
provide an indication of the future possibilities for using

123



A framework for exploring numerical solutions of advection–reaction–diffusion equations using a GPU-based approach

Fig. 2 Layout of the CPU
computational pipeline in terms
of the GPU graphics pipeline,
where data defined in a simple
array (e.g. a texture) over a
computational boundary (e.g.
the geometry) is scattered to the
processors (e.g. rasterized) and
operated on using a
computational kernel (e.g. a
fragment program), with the
results stored in memory (e.g.
the framebuffer). This example
shows how a 4 pipe GPU can be
used to invert the color of a
texture
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GPUs for large-scale scientific computing as the evolution
of the GPU continues to increase in speed, memory, and
precision.

1.2 Related work

A review of the literature shows that among the first to explore
the use of GP-GPUs for advection were Weiskopf et al. [30],
while some of the earliest work computing nonlinear diffu-
sion on a GPU was proposed by Strzodka and Rumpf [26].
Harris et al. [13] presents a method for solving PDEs using
GP-GPUs, including a reaction-diffusion system that utilizes
an explicit Euler scheme requiring one pass per data dimen-
sion. Lefohn et al. [17] builds on this approach for solving
PDEs associated with level sets. Kruger et al. [16] and Bolz
et al. [7] propose more general matrix solvers, ranging from
sparse to conjugate gradient methods, applying the solvers to
simple Navier–Stokes simulations and other examples. The
closest related work to our own is that of Goodnight et al. [11],
who implement a multigrid solver while discussing various
implementation strategies, including a cursorary compari-
son of their GPU implementation with a CPU analog. Our
work combines aspects of each of these proposed ideas to
create PDE solvers for advection–reaction–diffusion systems
using GPUs, while at the same time, preforming a rigorous
one-to-one comparison between the CPU and GPU imple-
mentations for scientific applications—these one-to-one
comparisons are the main contribution of our work.

2 CPU and GPU pipelines

We define the CPU computational pipeline for solving
advection–reaction–diffusion problems to be comprised of

five distinct components: arrays, computational boundaries,
scattering of data to processors, computational kernels, and
memory. Each of these components can be mapped one-for-
one into the GPU graphics pipeline as textures, geometry, ras-
terization, fragment programs, and the framebuffer—these
components form the basic building blocks for GP-GPU
computations. Details on the complete OpenGL graphics
pipeline can be found in [31], and further details on GP-GPU
basics can be found in [19] and [22].

In the following sections we describe how to implement
a simple CPU program on the GPU, where data defined in a
simple array (e.g. a texture) with a computational boundary
(e.g. the geometry) is scattered to the processors (e.g. raste-
rized) and operated on using a computational kernel (e.g. a
fragment program), with the results stored in memory (e.g.
the framebuffer). The pipeline is illustrated in Fig. 2. Included
in Fig. 2 is a branch showing where the fragment program is
loaded into the pipeline. There are several other minor parts
of the graphics pipeline and fragment programs, such the ini-
tialization process, that will not be discussed in this paper,
but are covered in detail in [10].

2.1 Arrays and textures

Textures are the main memory data structures for GP-GPU
applications, which store the values that would otherwise
populate arrays in a CPU implementation. Although tradi-
tional graphics applications use textures to store 2D images,
these data structures can be generalized as a one, two, or
three dimensional array of data. Each element in the array
is known as a texel (texture element), and each texel can
store up to four values (representing the four color elements
used when storing an image—red, green, blue, and alpha,
also known as RGBA). Each of these values can be stored
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as a single byte, or up to a 32-bit floating point value. When
accessing texels, texture coordinates are used in a similiar
fashion as array indices in a CPU implementation. Textures
coordinates, however, are floating point numbers that have
been (typically) normalized from zero to one. As will be dis-
cussed, the normalization of the texture coordinates plays
an important roll in the implementation the boundary condi-
tions.

For our GP-GPU implementation we choose to use four
element (RGBA), 2D floating point textures throughout for
reading and writing data, and also for representing the finite
difference discretization of the domain.

2.2 Computational boundary and geometry

Textures cannot be used alone and must be associated with
some geometry, just as a painter needs a frame (geometry)
on which they can stretch their canvas (texture) for painting.
As such, a quadrilateral is analogous to the boundary of the
discrete computational domain of a CPU application. Geo-
metry is generated through the specification of vertices that
define a polygonal object. A mapping that associates parts of
the texture with regions of the geometry is then implemen-
ted by associating texture coordinates with each vertex. For
example, when using all of a 2D texture for computation,
the texture can be applied to a quadrilateral of the same size,
matching each corner texture coordinate with a vertex of the
quadrilateral. Furthermore, a normalized mapping between
the quadrilateral and the texture would be from zero to one,
as shown in Fig. 3.

This one-to-one mapping is not always used, as it is often
desirable to break the computational domain into a series of
sub-domains. This approach is useful for applying Neumann
boundary conditions when performing relaxation. For
example, if the computation was to occur on the lower right
quadrant of a texture, the quadrilateral would be one quarter
the size with the normalized texture coordinates extending
from one half to one, as shown in Fig. 4.

Worth noting in a discussion of the geometry is the use
the GPU’s vertex processors, which transform the geometry
before associating a texture with it. Although the vertex pro-
cessors work in parallel, and may in some cases increase the
efficiency of a GP-GPU implementation, we have not found
their usage to be particularly helpful in our work, and as such
only mention them in passing.

2.3 Scattering and rasterization

Once the four texture coordinates and geometry have been
specified they are next rasterized by the GPU. Rasterization
interpolates the values across the geometry, producing a set
of fragments, For example, each fragment is assigned their
own set of texture corrdinates based on the texture coordi-
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Fig. 3 Example of mapping a texture onto geometry with the same
size so that computations occur over the entire texture. The geometry
vertices (0,0), (N ,0), (N , N ), and (0, N ) are mapped to the normalized
texture coordinates [0,0], [1,0], [1,1], and [0,1], respectively
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Fig. 4 Example of mapping a texture onto geometry that is one quar-
ter the size so that computations occur only over the lower right qua-
drant of the texture. The geometry vertices (0,0), (N/2, 0), (N/2, N/2),
and (0, N/2) are mapped to the normalized texture coordinates [0.5,0],
[1,0], [1,0.5], and [0.5,0.5], respectively

nates initally specified at the four corners. Each fragment
represents a single pixel (picture element) and includes pro-
perties of the geometry such as the 3D position and texture
coordinates as above but also the color. The fragments are
then scattered to the GPU processors similarly to how data
might be scattered to multiple CPUs.

2.4 Computational kernels and fragment programs

Fragment programs are the algorithmic steps that are per-
formed in parallel on each fragment in a single instruction

123



A framework for exploring numerical solutions of advection–reaction–diffusion equations using a GPU-based approach

multiple data (SIMD) fashion, equivalent to the computatio-
nal kernels within the inner loops of a CPU program. Howe-
ver, fragment programs have some limitations not inherent to
a CPU application. For example, global scope does not exist,
thus all data necessary for the computation must be passed to
the fragment program in much the same manner one would
pass-by-value data to a third party library. Also, fragments
have an implicit destination associated with them that can-
not be modified. That is, a fragment with array indices (i, j)
will be written to location (i, j). This may appear to be a
computational limitation, but in practice we have found it is
rarely necessary to use different indices for the source and
destination.

For our work we utilize NVIDIA’s high level shading lan-
guage Cg (C for graphics) [10]. NVIDIA provides APIs for
loading the Cg fragment programs from the main program, as
well as a compiler for creating the graphics hardware assem-
bly language. Using a high level language such as Cg greatly
aids in the development of GP-GPU applications as the pro-
gramming model is very similar to the well known C para-
digm. An example fragment program, implemented in Cg,
can be found in the Appendix.

2.5 Memory and framebuffer

The output destination of a fragment program is the framebuf-
fer. The data stored in the framebuffer can either be displayed
on a monitor, or it can be accessed as a texture that has been
attached to a data structure called a framebuffer object—this
texture can then be used as the input texture to another frag-
ment program. Unlike CPU memory, however, framebuffer
objects do not support in-place writing of data (e.g. the source
is also the destination). Further, the GPU will not write the
results until all fragments have been processed. The impli-
cations of this for iterative processes such as explicit solvers
and relaxation are discussed later in the paper.

2.6 Global scope and reduction

Due to the absence of global scope on the GPU, it is not pos-
sible to directly find, for example, the minimum or maximum
value of the data stored in a texture—a process that is easily
implemented within the computational kernel of a CPU pro-
gram. This process of reducing the data into a single value,
known as reduction, can be synthesized on the GPU through
a series of steps that gradually contracts the data into a single
value. The GPU reduction operation is akin to the restriction
operation used in a multigrid implementation.

To obtain different reduction operations—averaging, sum-
mation, greatest, least, equal, or Boolean—different filters
are specified. On the GPU, these filters are implemented
as short fragment programs and used when performing an
asymmetrical map between the geometry and a texture. For
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Fig. 5 Example of mapping a N × N texture onto smaller geome-
try, reducing the texture into a result that is half the texture’s size. The
geometry vertices (0,0), (N/2,0), (N/2,N/2), and (0,N/2) are map-
ped to the normalized texture coordinates [0,0], [1,0], [1,1], and [0,1],
respectively

instance, if the geometry is half the size of the texture and a
2 × 2 weighted linear average filter is specified in the frag-
ment program, then the output written to the framebuffer
will be one quarter the original size (Fig. 5). By repeatedly
halving the geometry over multiple passes, the output will
eventually be reduced to a single value that represents the
filtered value of all the data stored in the original texture.
While this description assumes that the domain is square and
an integer power of two, this need not be the case. The reduc-
tion technique can be used on arbitrarily sized domains with
appropriately sized filters.

Boolean operations can also be performed using the GPU’s
built-in hardware occlusion query. We have chosen to rely
on reduction operations instead of this more sophisticated
method for performing Boolean operations for two reasons.
First, using the occlusion query requires a deeper unders-
tanding of the graphics pipeline, including the use of the
depth buffer. And second, the occlusion query is single pur-
pose, only doing Boolean operations where as more general
reduction operations such and summation and Boolean are
needed.

3 GPUs for solving PDEs

In the previous section we describe the basic CPU computa-
tional pipeline and how it maps to the GPU graphics pipeline.
We now discuss our application of the GP-GPU components
to solving PDEs used for advection–reaction–diffusion
problems.

3.1 Problem background

Advection–reaction–diffusion problems are first-order in
time and second-order in space PDEs, representative of many
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parabolic (diffusion dominant) and hyperbolic (advection
dominant) systems. We have chosen to implement on the
GPU second-order finite differences in space and two
commonly employed time discretization schemes: forward-
Euler and a semi-implicit Crank–Nicholson. The reason for
choosing these solvers is twofold. First, these discretization
methodologies provide adequate results for our advection–
reaction–diffusion problems. And second, the properties of
each of these solvers are well known. This latter reason allows
for a rigorous comparison of the solvers’ implementations on
the CPU and the GPU, a task that may be unwieldy with more
complicated solvers.

3.1.1 Advection–reaction–diffusion basics

Arguably the most popular reaction-diffusion model is the
one developed by Turing in 1952 [27]. This model describes
the chemical process between two morphogens within a series
of cells. Due to instabilities in the system, the morphogens
both react and diffuse, changing their concentration within
each cell.

Turing described the reaction-diffusion of a two morpho-
gen model as a set of nonlinear PDEs:

∂u

∂t
= F(u, v) + du∇2u (1)

∂v

∂t
= G(u, v) + dv∇2v. (2)

These equations are solved on a two-dimensional domain
� with appropriate initial and boundary conditions, where
u(x, y, t) : �×[0,∞) → R and v(x, y, t) : �×[0,∞) →
R are the morphogen concentrations; F and G are the (non-
linear) reaction functions controlling the production rate of
u and v; and du and dv are the positive diffusion rates.

For the particular chemical problem of interest to Turing
[27], F and G are defined as:

F(u, v) = s(uv − u − α) (3)

G(u, v) = s(β − uv) (4)

where α and β are the decay and growth rate of u and v

respectively, and s is the reaction rate. For our applications,
we allow the decay and growth rates, as well as the reaction
rate, to vary across the domain.

Expanding upon our previous work [23], we consider
advection–reaction–diffusion systems of the form:

∂u

∂t
+ (a · ∇) u = F(u, v) + (∇ · σu∇) u (5)

∂v

∂t
+ (a · ∇) v = G(u, v) + (∇ · σv∇) v (6)

where a : � × [0,∞) → R denotes a (possibly) spa-
tially and temporally varying advection velocity, while σu

and σv denote symmetric positive definite, spatially

inhomogeneous, anisotropic, diffusivity tensors for u and v

respectively. Both u and v are clamped to be positive values
because of the physical impossibility for the concentration
of either morphogen to be negative. For more details on the
stability, equilibrium conditions, and other affects related to
the particular reaction chosen, see [9].

3.1.2 PDE solvers

In what is to follow, we will define everything in terms of
the morphogen u with the tacit assumption that v will be
handled similarly. For the purposes of our discussion, let
us assume that our two-dimensional domain of interest, �,
consists of a square with periodic boundary conditions. In this
domain, a finite difference grid point, xi j , lies a distance �x
from neighboring grid points. For many reaction-diffusion
models �x is a dimensionless unit spacing. Let us discretize
our morphogens as follows: un

i j = u(xi j , tn) where tn+1 =
tn + �t denotes discretization in time and n = 0, . . . , M
with M being the total number of time steps, and (i, j) =
0, . . . , (N − 1) with N equal to the width of the (square)
domain. For notational simplicity, let us define ūn to be an
N 2 × 1 vector containing the values of the morphogens over
the grid at time step tn where the entries of the vector are
given by ūn

i+ j N = un
i j .

Let A(ū) and D(ū) denote discretized finite difference
operators which, when acting upon ū, returns a second-order
centered approximation of the advection operator and the
diffusion operator respectively. For simple uniform isotropic
diffusion, the diffusion operator is

∇2(u)i, j = (u)i−1, j + (u)i+1, j

+ (u)i, j−1 + (u)i, j+1 − 4(u)i, j (7)

while the advection operator is

∇(u)i, j =
(

(u)i+1, j − (u)i−1, j

(u)i, j+1 − (u)i, j−1

)
. (8)

For complete details on diffusion operators using inhomoge-
neous anisotropic diffusion, see [24].

The (explicit) forward-Euler finite difference system gene-
rated by discretizing Eqs. (5) and (6) is defined as:

ūn+1 − ūn

�t
+ A(ūn) = F(ūn, v̄n) + D(ūn) (9)

v̄n+1 − v̄n

�t
+ A(v̄n) = G(ūn, v̄n) + D(v̄n) (10)

where the reaction terms are assumed to be explicit evalua-
tions of the morphogens at the grid points. This scheme is
first-order in time.

Equations of this form can be manipulated so that the
unknowns at the next time step, namely ūn+1 and v̄n+1, can
be deduced explicitly from known information at time step
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tn—no system inversion is required. The major advantage
of computational systems of this form is the ease of imple-
mentation, while their major drawback is that the time step
used in the computation is not only dictated by accuracy, but
also stability. Depending on the diffusivity of the system,
the stability constraint due to the diffusion number may be
far more stringent than the accuracy constraint (and is more
constraining still than the CFL condition for the advection
and reaction terms) [14].

One possible way to alleviate the diffusion number
constraint is to use a semi-implicit scheme [15], in which
the advection and reaction terms are handled explicitly and
the diffusion terms are handled implicitly. Such an approach
yields the following system of equations to solve:

ūn+1 − ūn

�t
+ A(ūn) = F(ūn, v̄n) + (1 − θ)D(ūn)

+ θ D(ūn+1) (11)

v̄n+1 − v̄n

�t
+ A(v̄n) = G(ūn, v̄n) + (1 − θ)D(v̄n)

+ θ D(v̄n+1). (12)

where 0 ≤ θ ≤ 1. Given the linearity of the discretized
diffusion operator, we can thus re-write the system to be
solved as:

(I − θ�t D)ūn+1 = ūn + �t (−A(ūn) + F(ūn, v̄n)

+ (1 − θ)Dūn) (13)

(I − θ�t D)v̄n+1 = v̄n + �t (−A(v̄n) + G(ūn, v̄n)

+ (1 − θ)Dv̄n). (14)

where I denotes the N 2 × N 2 identity operator and D denotes
the N 2 × N 2 linear finite difference diffusion operator. With
the choice of θ = 0, we regain the explicit forward-Euler
scheme. For θ > 0 we obtain a semi-implicit scheme. Two
commonly used values of θ are θ = 1 (corresponding to
first-order backward-Euler for viscous terms) and θ = 0.5
(corresponding to second-order Crank–Nicholson for the vis-
cous terms) [15].

The semi-implicit scheme with θ ≥ 0.5 eliminates the
stability constraint due to the diffusion terms at the trade-
off of requiring inversion of the linear operator (I − θ�t D).
The GP-GPU is amenable to several types of iterative solu-
tion techniques for matrix inversion, such as general relaxa-
tion techniques (e.g. Jacobi) and hierarchical techniques (e.g.
multigrid).

3.2 GPU implementation

Given the previous background we now discuss the specific
GP-GPU implementation for solving the PDEs that couple
the advection–reaction–diffusion equations.

3.2.1 Common components

For the explicit and semi-implicit solvers there are three com-
mon components. The first is the use of four element (RGBA)
floating point textures that hold the constants associated with
advection, reaction, and diffusion for each cell, and are used
as input data to the fragment programs. These textures are
similar to the arrays one would use in a CPU implementation
in that they are used to pass static data to the computational
kernel. These textures are referred to as ancillary textures
(Tancil).

The second component common to both solvers is the need
in the diffusion computation to access not only the current
data value, but also the neighboring data values. Additionally,
for inhomogeneous anisotropic diffusion it is necessary to
also access the neighboring diffusivity terms.

In a CPU implementation, determining the offset posi-
tions of the neighbors at each data value can be explicitly
calculated, or preferably, retrieved from a precomputed
lookup table. This latter approach can be taken with a GPU
by using another texture as the lookup table. This texture,
however, then must be stored within the limited GPU
memory. Computing neighbor offsets could also be done
using the GPU’s vertex processors, albeit at the cost of increa-
sed programming complexity. An alternative approach that
we have taken is to explicitly pass the neighbor offsets into
the fragment program as multiple texture coordinates. To pass
these coordinates, multiple texture coordinates are specified
at each vertex of the geometry, with the rasterizer interpo-
lating these coordinates for each fragment passed into the
fragment program. Ideally, the coordinates of all eight sur-
rounding neighbors would be passed, however most GPUs
allow at most four sets of texture coordinates to be specified
per vertex. To bypass this hardware limitation we use three
texture coordinates for specifying the neighbor positions—
the lower left neighbor, central coordinate, and the upper right
neighbor. These three coordinates can be combined to fully
specify all eight neighbors by accessing each component
of the texture coordinates individually within a fragment
program.

The third common component to both solvers is the imple-
mentation of boundary conditions, such as periodic or first
order Neumann (zero flux). For a CPU implementation it
would be necessary to adjust the boundary neighbor coor-
dinates in the lookup table, or to have conditional branches
for the calculations along the boundary. In a GPU implemen-
tation, these alterations are avoided by defining a texture to
be repeated or clamped. The repeat definition requires that
a modulo operation be performed on the texture coordinates
before accessing a texel. Likewise, the clamped definition
requires that a floor or ceil operation be performed if the
texture coordinates are outside the bounds. Thus, adjusting
the texture definition to be repeated or clamped, periodic or
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log2(N)

N-2log2(N)

N

Fig. 6 Geometry domain using five quadrilaterals to obtain Neumann
boundary conditions

Neumann boundary conditions respectively can be prefor-
med automatically by the GPU.

For a semi-implicit implementation utilizing Neumann
boundary conditions, however, it is well understood that extra
relaxation sweeps are required near the boundaries to obtain
ideal asymptotic convergence rates [8]. As such, our semi-
implicit implementation uses five different computational
domains; one for the interior and four for the boundaries,
as shown is Fig. 6. The thickness of the Neumann bounda-
ries are dependent on the size of the grid. For the examples in
this paper, the thickness is log2(N ), where N is the grid edge
length. Overlap of the boundaries at the corners adds only a
negligible cost to the overall computation while aiding in the
convergence of the solution.

Solving within a fragment program the PDEs that govern
the advection–reaction–diffusion equations for both the
explicit and semi-implicit form is very similar to a CPU-
based approach with two exceptions—the use of vector arith-
metic and swizzling [18] in Cg fragment programs. Vector
arithmetic allows for element-wise arithmetic operations to
be performed, while swizzling allows the element ordering
to be changed during vector operations.

Because the textures and framebuffer are four element
(RGBA) texels and pixels respectively, arithmetic operations
in the fragment program may be done on a vector basis,
greatly simplifying and speeding up the advection and dif-
fusion calculations. Although vectoring is of little use in the
reaction calculation where individual components of the tex-
ture are used, the swizzle operation can be used to optimize
the performance of other operations.

3.2.2 Explicit solver

Explicitly solving the advection–reaction–diffusion PDEs
[Eqs. (9) and (10)] is straight forward, and requires only one
fragment program per iteration. Moreover, because updating
the values of u and v are independent computations, they
may be computed efficiently using the GPU vector arithme-
tic operations.

The basic loop is as follows: store the required constants
(advection, reaction, and diffusion rates) as ancillary texture
values (Tancil); store the initial morphogen values in an input
texture (Tping) that is attached to the framebuffer; use the
fragment program to vector calculate (including clamping
to positive values) the advection–reaction–diffusion for both
morphogens; store the results in an output texture (Tpong)
that is also attached to the framebuffer. The output texture
is then used as the input texture for the next iteration. The
process is repeated for a set number of iterations or until
the user determines a stable solution has been reached. A
flow diagram of the complete process is shown in Fig. 7, and
example code can be found in the Appendix.

There is one aspect of the loop that must be expanded
upon—the use of the input and output textures used to hold
the current and next time step morphogen values (Tping and
Tpong). In a CPU implementation, the new morphogen values
would be written over the old values once the calculations
have been completed, i.e. in-place writing. Previously discus-
sed under the definition of Framebuffer Objects, however, an
input texture can not also be the output texture. As such, two
textures must be used and alternated as the input and the out-
put. This technique is commonly called ping-ponging, and
as long as an even number of iterations are performed, the
use of these two textures can be hidden from the CPU.

There is no communication between the GPU and the CPU
other than to load the initial values and to obtain the final
results because the complete advection–reaction–diffusion
calculation, including clamping the morphogen values to be
positive, can be done in a single fragment program. This lack
of interaction greatly speeds up the computations by limiting
the communication between the GPU and CPU, which is
often a bottleneck due to the limited amount of bandwidth
available.

3.2.3 Semi-implicit solver

Solving the advection–reaction–diffusion PDEs with an
implicit-solver can be, depending on one’s point of view,
more interesting, or, more difficult. The GPU is amenable to
several types of iterative solution techniques, such as relaxa-
tion and hierarchical techniques, all of which require mul-
tiple fragment programs. For our implementation we have
chosen to use relaxation in combination with a L2

norm resi-
dual test [6]. As explained in detail below we also utilize a
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Tping Tpong

Tping

or
Tpong

If Tping then Tpong

if Tpong then Tping

Texture in Framebuffer

Initial Morphogen
Values u and v

Initially Tping

Fig. 7 Flow diagram showing the basic steps taken using an explicit
solver on the GPU. The process flow is represented with black arrows
while the inputs are shown in gray

L∞
norm test to limit the number of relaxation steps. Each of

these tests require a fragment program for the computation,
as well as one for a reduction operation, to obtain the result.
All total, five steps are necessary using three fragment pro-
grams and two reduction operations per iteration. The three
fragment programs are described in the following sections,
with a succeeding section that summarizes the semi-implicit
computation loop.

Right hand side

The first fragment program vector calculates the right-
hand-side of Eqs. (13) and (14), storing the results in a texture
(TRHS) attached to the framebuffer.

Relaxation

The second fragment program performs the relaxation to
obtain a solution at the next time step. When performing

relaxation, a Gauss-Seidel updating scheme is usually pre-
ferred as it will typically converge twice as fast as Jacobi
schemes [14]. For a Gauss-Seidel scheme to be implemen-
ted efficiently in parallel, it is necessary to have a shared
memory architecture. The GPU design, however, does not
allow access to the next values until all fragments have been
operated on. This limitation can partially be over come by
using a red-black updating scheme, but requires conditional
branches in the fragment program to process the red, then
black, passes. This situation is further complicated on the
GPU because it is not possible to write in-place, requiring
a ping-pong technique to be integrated. These cumbersome
restrictions do not apply to the parallel Jacobi scheme, where
intermediate values are not required and an even number of
relaxation steps can keep the texture ping-ponging hidden.
Thus, the experiments presented in this paper use a Jacobi
updating strategy.

Although a preset number of relaxation steps can be per-
formed, it may be stopped early if the high frequency values
are damped quickly and do not change significanly with sub-
sequent relaxation. This is based on an L∞

norm. When testing
for this on a CPU, a global variable would be set if one or
more of the values have changed significantly after a relaxa-
tion step. The setting of a global variable is not possible with
GPUs, requiring the test to be performed through a reduction
operation.

To perform the test, an L∞
norm is calculated at each texel

using the current and previous value, and the difference is
then tested against a preset value to see if the value has chan-
ged significantly. This is done as a boolean operation in the
fragment relaxation program and stored as one of each texel’s
four elements. Once a relaxation step is completed, the boo-
lean results are sent to a reduction operation that uses a sum-
mation filter to obtain a count of the values that have changed
significantly—if the count is non zero the relaxation step is
repeated.

The overhead of performing the test after each relaxa-
tion step, though, out weighs the benefits of stopping the
relaxation early. As such, we have empirically determined
that performing the test after every fourth to sixth relaxation
step provides a reasonable balance in performance. By not
testing after each iteration we are relying upon the behavior
of iterative relaxation schemes to quickly remove the high
frequency error while taking many iterations to remove the
low frequency error.

It should be noted that if the L∞
norm passes the residual test

is still required insure that a satisfactory solution has been
found.

Residuals and clamping

The third fragment program calculates the residuals that are
used to insure that the relaxation solution, which is an
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approximation, is satisfactory. This test is a two step ope-
ration. For the first step, the square of the residual of Eqs.
(13) and (14) is calculated and stored as one of each texel’s
four elements in a separate texture (Tresid). For the second
step, the sum of squares of the difference is calculated using
the reduction operation.

While the residual values are being calculated, the mor-
phogen values are also clamped to positive values and stored
as two of each texel’s four elements in the residual texture
(Tresid). If the residual test is passed, these pre-calculated
clamped values can be used in the next iteration. Otherwise,
the unclamped values can be further relaxed and re-tested.
Though this pre-calulation of the clamped values results in
only a slight overall increase in efficiency (<1%), it demons-
trates the flexibility of using the GPU for general processing.

The entire process is repeated for a set number of itera-
tions or until the user determines a stable solution has been
reached.

Complete loop

With this general description, the semi-implicit loop is as fol-
lows: store the required constants (advection, reaction, and
diffusion rates) as ancillary texture values (Tancil); store the
initial morphogen values in an input texture (Tping) that is
attached to the framebuffer; vector calculate the RHS for u
and v, storing the results in a texture (TRHS) attached to the
framebuffer object. Next, load the current morphogen (Tping),
RHS (TRHS) and the required constants (Tancil) textures; use
the relaxation fragment program to vector calculate the next
value of u and v and the L∞

norm for each; store the results in
an output texture (Tpong) that is also attached to the frame-
buffer. Check the L∞

norm after every sixth iteration using the
reduction operation. After the relaxation is complete, calcu-
late the residuals and clamped values storing the results in a
texture (Tresid) attached to the framebuffer object. Sum the
residuals using a reduction operation. If the residual is too
large the relaxation process is repeated until the residual is
small enough or is no longer decreasing. If the residual test
passes, use the clamped values and repeat the entire process
for the next iteration. A flow diagram of the complete process
is shown in Fig. 8.

There is one aspect of the process that deserves special
attention. In order take advantage of the arithmetic vector
processing on a GPU, our implementation requires that both
u and v be operated on in a lock step manner. That is, if
one requires further relaxation or has large residuals it is the
same as if both failed. As a result, both morphogens will be
processed with the same number of relaxation steps, which
in some cases will result in an over relaxation. It is pos-
sible, however, to operate on each separately through the use
of conditional branches, but the cost of doing so in frag-
ment programs out weighs the cost of the over relaxation

Tping Tpong

Tping
or

Tpong

If Tping then pong

if Tpong thenT

T

ping

Texture in Framebuffer

Initial Morphogen
Values u and v

Initially Tping

Write to Texture (TRHS)
in Framebuffer

6th Iteration?

Write to Texture (Tresid)
in Framebuffer

GPU - Fragment Program
Calculate Residuals and
Clamp to Positive Values

Use Clamped Values
in TextureTresid

GPU - Fragment Program
Relaxation w/Jacobi & Compute Change

GPU - Fragment Program
Reduction Operation - Test for Change

Fig. 8 Flow diagram showing the basic steps taken using an implicit
solver on the GPU. The process flow is represented with black arrows
while the inputs are shown in gray
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computations. Conversely, a staggered approach which would
be done on a CPU can be used. In this case, u and v are stored
and operated on separately—in our experience this results in
a 25% to 33% increase in computational time without any
quantitative difference in the solution. As such, the results
presented in this paper utilize the more efficient lock step
approach for computing u and v.

The above point highlights that when mapping algorithms
onto the GPU, implementing the CPU version exactly may
not always be the most algorithmically efficient scheme.
And for some algorithms, such as a Gauss-Seidel updating
scheme, the inefficiencies may preclude its use on the GPU.
These examples illustrate how the GPU architecture can often
dictate the implementation.

4 Results and discussion

We have used Turing’s reaction-diffusion model, which in
its simplest form produces a spot or stripe pattern as shown
in Fig. 9, to verify and validate our implementations. The
system has been implemented on both the CPU and GPU
as explicit and semi-implicit (Crank–Nicholson) Euler solu-
tions with periodic boundary conditions on an Intel Xeon P4
running at 3.4 GHz with 2 Gb of RAM and 2 Gb swap, and
a NVIDIA GeForce 6800 Ultra graphics card with 256Mb
of memory using version 1.0-8178 of the NVIDIA Linux
display driver.

For both integration schemes we discretize the grid using
a dimensionless unit spacing, which is the norm for reaction-
diffusion models. In addition, the largest time step possible
with respect to stability limitations was used for each scheme.
The diffusion stability bounds the explicit scheme, whereas
the reaction stability bounds the semi-implicit scheme.

To facilitate a fair comparison, both the CPU and GPU
implementations have the exact same capability. Because the
GPU is able to use at most 32-bit floating point precision the
CPU version was also limited to machine single precision.
We further note that memory organization can effect per-
formance. As such, contiguous memory allocation, which is
required for the textures, was used for CPU memory layout.

In order to compare the results it is necessary to ensure
that the solutions obtained are the same in all cases, or at
least reach a preset stopping criteria typically based upon
a difference measure. Quantitatively comparing the solu-
tion results, however, is not possible for reaction-diffusion
models because the equilibrium reached is dynamic; meaning
that although a stable pattern forms, the system continues to
change. This problem is further compounded by the diffe-
rences in the implementation of the floating point standard
between the CPU and GPU, which creates slightly different
solutions. Thus, we use a criteria based strictly on the num-
ber of iterations, such that each solution has the same overall

Fig. 9 A spot and stripe pattern formed using a Turing reaction–
diffusion system

Table 1 Time, in seconds, for the four different PDE solutions of
Turing’s spot pattern, along with the relative speedup for a 512 × 512
grid

CPU GPU

Forward Euler 6,030 s
11.7x→ 516 s

↓ 3.3x ↓ 1.4x

Crank–Nicholson 1,807 s
5.0x→ 362 s

The solutions use a total integration step time of 25,000 s, with an expli-
cit time step of 0.5 s for 50,000 iterations, and an implicit time step of
12.5 s for 2,000 iterations

integration time whether the technique used was explicit or
implicit, or performed on a CPU or GPU—see Table 1 for
the integration times. In Fig. 10 we show a comparison of the
results for the four solution techniques that have each reached
a dynamic equilibrium; each of the solutions are equivalent in
the Lyapunov-sense. Furthermore, under very close examina-
tion is it difficult to visually discern the differences between
the CPU and GPU solutions. We thus conclude that each of
the solvers have reached an approximately equal solution.

Although the implementations and the compilers are opti-
mized, the times we report are not the absolute best possible.
This is because the framework was developed as an applica-
tion to explore various advection–reaction–diffusion models
rather than to specifically compute one model. We believe,
however, that even if the computations were streamlined fur-
ther, the relative speedups would not change significantly. As
such, the results give a good indication of the power of using
the GPU for general processing on a practical level.

Table 1 shows the relative compute times for both the CPU
and GPU implementations using a 512 × 512 grid. For all
cases the total integration time is the same—25, 000 s—with
an explicit time step of 0.5 s for 50, 000 iterations, and an
implicit time step of 12.5 s for 2, 000 iterations. The 0.5 and
12.5 s represent the largest possible time steps for maintai-
ning stability requirements. In the case of the explicit solu-
tion, the time step is bound by the diffusion, whereas with
the semi-implicit solution, the time step was bound by the
reaction.
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Fig. 10 A comparison of the solution for Turing’s basic spot pattern
using (left to right, top to bottom): an explicit CPU technique; an explicit
GPU techniques; a semi-implicit CPU technique; and a semi-implicit
GPU technique. Qualitatively all of the solutions are approximately
equal

As one would expect, the GPU implementations are faster
than the CPU implementations, ranging from approximately
5.0–11.7 times faster for semi-implicit and explicit solutions,
respectively. This is most evident when comparing the expli-
cit implementations where, unlike the semi-implicit imple-
mentations, a single fragment program is used, resulting in
less overhead and a greater overall speed up.

When comparing the CPU and GPU explicit and semi-
implicit implementations, a greater speed up is realized on
the CPU than the GPU, 3.3 versus 1.4, respectively. This dif-
ference is attributed to the overhead of using multiple frag-
ment programs and a specialized reduction operation on the
GPU. On the CPU there is no need for an explicit reduction
operation because there is global scope and such calculations
can be done as part of the relaxation and residual operations.

Finally, the speed of the GPU implementations makes it
practical to visually study the affects of advection because
of the near real time images obtained during the simulation.
When visually studying the advection, it is preferable to use
the explicit solution because more intermediate views are
available for visualization, resulting in smoother motion. For
example, when displaying the results after every 50th itera-
tion for a 256×256 grid using an explicit GPU implementa-
tion, 6.8 frames per second can be obtained. It is possible to
get real time frame rates by displaying the results after every
10th iteration, which provides 22 frames per second. The ove-
rhead of this smoother visualization process, however, slows
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Fig. 11 Average time in seconds for square grid widths of 128, 256,
512, and 1, 024 for four different implementations: forward Euler
CPU (triangle); Crank–Nicholson CPU (asterisks); forward Euler GPU
(square); Crank–Nicholson GPU (circle)

down the system by approximately 1/3 when compared to
displaying the results after every 50th iteration.

Another important issue is scalability. GPUs, like other
processors, have a limited amount of memory that can be
accessed before explicit memory management must be used.
Unlike CPUs where there is some flexibility on the amount
of memory available, GPUs have only a fixed amount of
memory. Thus, for optimal GPU performance it is necessary
to work within these strict memory bounds. In Fig. 11 we
show the results of the computation time as a function of
grid width for both the forward Euler and Crank–Nicholson
implementations. The computation time is approximately
quadratic with grid width, and large (1, 0242) grids are
accommodated without a loss in performance.

The next comparison is the ratio of the CPU and GPU solu-
tion times as a function of the grid width using both explicit
and semi-implicit implementations. Shown in Fig. 12, it is
readily apparent that there is a consistently greater speed up
when using an explicit solution. Furthermore, the speed up
ratio of the explicit solution increases with the grid width at a
greater rate than the semi-implicit solution due to the increase
in the number of relaxations required to smooth the fine detail
in the semi-implicit solution over the larger grids. We expect
that the use of hierarchical solutions, such as multi-grid, will
cause the relative speed ups between the explicit and implicit
solutions to remain approximately constant.

Finally, we compare the ratio of the explicit and semi-
implicit times as a function of grid width using GPU and
CPU implementations as shown in Fig. 13. The relative speed
ups are similar across the grid width, with the CPU speed up
being greater than the associated GPU speed up. This is again
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Fig. 12 Speed up ratios between CPU and GPU solutions for square
grid widths of 128, 256, 512, and 1, 024 using an explicit (square) and
an semi-implicit (circle) implementation
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Fig. 13 Speed up ratios between explicit and semi-implicit implemen-
tations for square grid widths of 128, 256, 512, and 1,024 using a GPU
(square) and a CPU (circle)

attributed to the need for multiple fragment programs and a
separate reduction operation on the GPU when using semi-
implicit implementations. In fact, this overhead is so great on
the GPU for the semi-implicit solutions that much of the com-
putational benefits are lost. This shows that not only must the
problem space fit on the GPU, but the implementation must
also align with the GPU architecture to achieve significant
increases in the computation time.

In all of the experiments reported above we have observed
similar trends when using Neumann boundary conditions. As
such, we conclude that the type of boundary condition adds
very little overhead to the overall implementation.

5 Conclusions

The use of GPUs for general purpose processing, though still
in its infancy, has proven useful for solving the PDEs asso-
ciated with advection–reaction–diffusion models. We show
that both explicit and semi-implicit solutions are possible,
and that good speed ups can be achieved, more so with expli-
cit than semi-implicit solutions. Even with their associated
programming overhead, GPU implementations have a simi-
lar structure to CPU implementations. Though global scope
is not directly available with GPU-based implementations, it
can be synthesized through other native GPU operations that
mimic CPU style restriction operations. Implementations of
these types of operations, however, may not be straight for-
ward to researchers without graphics programming know-
ledge.

Perhaps the most surprising finding is that due to the ove-
rhead of multiple fragment programs, the speed-ups most
often associated with semi-implicit relaxation schemes are
lost when implemented on a GPU. Though faster than CPU
based semi-implicit implementations, they are not signifi-
cantly greater than GPU based explicit solution. As pre-
viously noted, this shows that not only must the problem
space fit on the GPU, but the implementation must also align
with the GPU architecture.

In the work presented here we use basic solvers with 2D
finite differences. Finite differences, with its implied neigh-
bor relationships, is straight forward to implement because
of the one-to-one mapping to a texture, while the neighbor
indexes can be readily pre-calculated. We take advantage of
the use of additional texture coordinates to perform this cal-
culation.

We are now left with the question: Is our implementation
and associated results indicative of other problems and other
solvers? To explore this question, we have begun to inves-
tigate a GPU volume solver with finite differences which,
when compared to a similar CPU implementation also using
an explicit solver, provides a 22−27 times increase in perfor-
mance. This much larger increase in performance we believe
is due the unique memory paging system on the GPU that is
not native to, but could be implemented on, the CPU.

It would also be of interest to use a finite element approach
that requires textures to store the neighbor indices. If a curved
domain was used, additional textures would be needed to
store the mapping for each element back to a unit element.
Using additional textures is limited only by the number of
textures that can be passed, and the available memory on the
GPU.

Perhaps not as clear are the results of applying GPU
techniques to other, more complicated solvers because of
the overhead of using multiple fragment programs and their
associated control structures. We envision that GPU imple-
mentations of techniques that require global results, such as
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an L2
norm residual, will generate less speed up over techniques

that would require an L∞
norm (which may be able to use the

hardware occlusion queries in an asynchronous manner).
Of greater interest is applying this work to other science

and engineering problems that can fit within the memory and
precision limits of the GPU. While current GPU memory and
precision are limited, we expect the continuing evolution of
GPU technology (including multiple GPUs per machine and
an accumulator that would provide global memory scope as
well as the full developement of environments like NVIDIA’s
CUDA) to allow for the application of the techniques presen-
ted in this paper to larger computational applications.

Finally we must stress that the technology is changing
rapidly. In the course of this research, the authors used three
different graphics cards, six versions of the NVIDIA display
drivers, three versions of the Cg compiler, and two different
off-screen rendering protocols (Pixelbuffers and Framebuffer

// Load the fragment program to be used on the GPU
cgGLBindProgram( _cg_Program );

// Enable the acillary texture
cgGLEnableTextureParameter( _cg_ConstsTex );

// Set the inputs to be the Ping Texture
cgGLSetTextureParameter( _cg_Inputs, _gl_PingTexID );
//Set the drawing (writing) to be the Pong Texture which is in FrambebufferObject1
glDrawBuffer( GL_COLOR_ATTACHMENT1_EXT );
// Do the drawing which invokes the fragment program
glCallList( _gl_dlAll );

// Repeat the last three steps but this time the Pong Texture is the input and
// the Ping Texture is the output.
cgGLSetTextureParameter( _cg_Inputs, _gl_PongTexID );
glDrawBuffer( GL_COLOR_ATTACHMENT0_EXT );
glCallList( _gl_dlAll );

A sample fragment program, implemented in Cg, that demonstrates the calculation of the reaction portion of the system on
the GPU.

void main(float2 texCoord0:TEXCOORD0, // Upper left neighbor texture coordinate
float2 texCoord1 : TEXCOORD1, // Central neighbor texture coordinate
float2 texCoord2 : TEXCOORD2, // Lower right neighbor texture coordinate

uniform sampler2D inputs, // Input texture values
uniform sampler2D consts, // Constant texture values

out float4 oColor : COLOR) // Output value
{
// Get the current value from the input texture.
float4 c = f4tex2D( inputs, texCoord1 );

Objects). The affect of each change typically increased the
speed of the GPU implementations, but not always. This is
because the four GPU components presented in the paper are
typically not updated in concert. As such, as one component
is updated it may take time for the other components to also
utilize the newer technology.
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Appendix

Pseudo code that demonstrates the C++ program that is used
on the CPU for the explicit solver.
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// Set the output to the current value.
oColor = c;

// Get constant values for this cell.
float4 c_values = f4tex2D( consts, texCoord1 );

// Calculate the "Reaction" portion using float4 vector operations
// along with swizzling (eg. c.rrbb * c.ggaa).
float4 nonlinear = c.rrbb * c.ggaa * float4(1.0, -1.0, 1.0, -1.0);
float4 linear = c * float4(-1.0, 0.0, -1.0, 0.0);
float4 konst = c_values.rgrg * float4(-1.0, 1.0, -1.0, 1.0);

// Add the reaction to the current value.
oColor += c_values.a * (nonlinear + linear + konst);

// Clamp the values to be positive.
if ( oColor.r < 0.0f ) oColor.r = 0.0f;
if ( oColor.g < 0.0f ) oColor.g = 0.0f;
}
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