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Abstract—
This paper describes a method for constructing isosurface triangulations of sampled, volumetric, three-dimensional scalar fields. The
resulting meshes consist of triangles that are of consistently high quality, making them well suited for accurate interpolation of scalar
and vector-valued quantities, as required for numerous applications in visualization and numerical simulation. The proposed method
does not rely on a local construction or adjustment of triangles as is done, for instance, in advancing wavefront or adaptive refinement
methods. Instead, a system of dynamic particles optimally samples an implicit function such that the particles’ relative positions can
produce a topologically correct Delaunay triangulation. Thus, the proposed method relies on a global placement of triangle vertices.
The main contributions of the paper are the integration of dynamic particles systems with surface sampling theory and PDE-based
methods for controlling the local variability of particle densities, as well as detailing a practical method that accommodates Delaunay
sampling requirements to generate sparse sets of points for the production of high-quality tessellations.

Index Terms—Isosurface extraction, particle systems, Delaunay triangulation.

1 INTRODUCTION

The problem of surface meshing has been studied extensively in a wide
array of applications and contexts by a range of disciplines, from visu-
alization and graphics to computational geometry and applied mathe-
matics. Existing approaches for tackling the surface meshing problem
can generally be distinguished by answers to the following questions:
How is the original surface specified? What is the representation of
the output mesh? What are the metrics for measuring the quality of
the mesh? This paper deals with a particular application, which is the
generation of nearly-regular triangle meshes from medical or bi-
ological data either for visualizing interpolated quantities or for
conducting numerical simulations.

Generating polygonal reconstructions of biological data is impor-
tant in a variety of contexts. For example, in bioelectric field prob-
lems there is evidence of better source localization when inverse prob-
lem solution techniques employ geometry and material properties that
conform to those of the patient or subject [41]. Similarly, research
in cardiovascular fluid dynamics and image guided medical simula-
tions rely increasingly on models created from images of real vascu-
lature [39, 11]. Recent work proposes using image driven geometry
for the analysis of biomolecular functional models [47]. Accurate and
compelling visualizations of simulated quantities over surfaces, such
as the visualization of flow on manifolds [42], also require high-quality
geometry. In the context of mesh generation, visualization and simu-
lation are related in the way they demand not only accurate geometric
approximations but also representations that provide for accurate in-
terpolation of other physical quantities across the surface.

The dependence of biomedical applications on image data drives
several aspects of this work. First, a surface is not represented in a
parameterized form but rather as a volumetric constraint, such as a
level-set in a binary or gray-scale mask resulting from an image seg-
mentation. Thus, we focus on isosurfaces. Second, images have finite
resolution and cannot capture small, sharp features beyond the resolu-
tion of the imaging device, which is limited by inter-sample distance
and the point-spread function of the measurement process. Thus, the
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proposed method trades geometric accuracy for mesh quality and topo-
logical consistency, resulting in numerically useful meshes.

The strategy described in this paper combines work from several
disparate fields, establishing a global approach to meshing isosur-
faces of volume data. This approach generates high quality, closed
surface meshes (i.e. water-tight) that adapt triangle size to approxi-
mate closely the isosurface geometry. Although the proposed method
is computationally expensive, the production of consistently higher
quality meshes than other approaches makes the method useful for
applications that demand very regular triangulations. Starting with a
smooth reconstruction of the volume data, the method computes the
curvature and medial axis of an isosurface, which are then used to
construct a Lipschitz continuous measure of local feature size, a fun-
damental geometric quantity that governs the minimal sampling rate
of a surface. A dynamic particle system then positions a large num-
ber of samples with inter-point distances that respect this local feature
size. The resulting point samples are triangulated using the Delaunay-
based meshing algorithm of Dey and Goswami [13], an algorithm that
relies on sampling densities that exceed the minimal sampling rate.
Thus, this paper proposes a new meshing pipeline while also address-
ing the question of how, in practice, to make use of the fundamental
work in surface sampling theory by detailing an algorithm for reliably
achieving specific sampling densities.

The remainder of the paper proceeds as follows: the next section
provides a brief overview of some recent work in the literature that
relates to isosurface meshing and several techniques that are integral
to the proposed method. This is followed by sections that describe
the meshing pipeline, present results and comparisons, and finish with
some conclusions.

2 RELATED WORK

Early work on isosurface meshing focuses on efficiently generating
approximate meshes, used mostly for visualization. The well-known
marching cubes algorithm [46, 25] robustly produces first-order ap-
proximations quickly, but can construct incorrect topologies that do
not accurately adhere to the isosurface geometry, and may not be
water-tight. Furthermore, quality measures of triangle regularity can
be arbitrarily poor while vertex valences vary greatly, independent of
the input surface geometry. Improvements to marching cubes are nu-
merous, including improvements for better geometric approximations
and closed meshes [30].

One general class of strategies for achieving higher quality surface
polygonalizations is to start with a mesh that is either coarse or of
low quality and, through some combination of mesh refinement, edge-



Fig. 1. The proposed mesh generation pipeline using a dynamic particle system. First, a medial axis is computed from a distance transform of an
implicit surface; next, an initial sizing field is built from the local feature size and radius of curvature; a smoothed sizing field is then generated by
limiting the gradient of the initial sizing field; particles sample the sizing field and distribute themselves accordingly; and finally, the particles are
triangulated using a Delaunay surface reconstruction algorithm.

swapping, or vertex repositioning, incrementally improve the mesh
geometry and triangle quality. For example, Velho [43] proposes a
curvature-based refinement method for improving the geometric accu-
racy of a marching cubes mesh, but does not fully address the issue
of triangle quality. Wood et al. [45] propose another strategy that first
constructs a coarse, topologically correct mesh that is then smoothly
refined, producing higher quality triangles. Other researchers have
proposed refinement algorithms without the need for a base mesh [9].
In general, however, the strategy of refining a mesh to improve trian-
gle quality produces the inefficiency of a great many samples that are
dictated by mesh quality rather than the geometry of the underlying
surface (for convergence rates see [9]).

Another general strategy for quality isosurface meshing is to start
from one or more seed points and grow triangles in the form of an
expanding, or advancing, front [23, 16]. The basic approach is quite
fast and can produce high-quality triangles, especially when triangle
size is adapted to local surface curvature [20, 33]. The advancing
front, however, must be able to detect and avoid self-intersections,
causing triangle sizes along merging fronts to be determined not only
by surface geometry, but also by the geodesic curvature (curvature in
the tangent plane) of the moving front. This problem becomes even
more acute when the data contains wavefronts that collide from oppo-
site directions, which is unavoidable for certain topologies or shapes.
Thus, advancing front algorithms must have built-in heuristics, such as
wavefront smoothing [34], or special triangulation schemes (e.g. edge
swapping) that deal with collapsing or colliding wavefronts, often at
the expense of triangle quality in those areas.

A third approach to surface meshing is to generate an unorganized
set of surface samples and use algorithms from the computational ge-
ometry literature to create a Delaunay tessellation of the points. Early
work in the field provides the algorithmic foundations for produc-
ing solid Delaunay triangulations in 2D and 3D [32, 15, 10], com-
plemented by literature on the theory and methods for extracting the
surface manifold [3, 2, 5, 12]. These methods employ a compelling
bottom-up approach for constructing edges and faces from non-local
properties of a point set, guaranteeing closed, non-intersecting meshes.
Generating the set of surface samples, which determine the topology
of the resulting tessellation and the quality of the resulting triangles, is
difficult and generally treated as either a separate problem, or as part
of an adaptive scheme for iteratively improving mesh quality [9, 14].

This paper proposes a surface sampling and triangulation algo-
rithm that relies on fundamental sampling requirements associated
with Delaunay surface reconstruction schemes. Amenta et al. pro-
vide the quantitative requirements, based on surface geometry, for 2D
curves [3] and 3D surfaces [2], such that a unique Delaunay tessel-
lation exists from which a subset of edges or faces have a topological
equivalence to the underlying surface. After distributing a set of points
based on these sampling requirements, we use methods that generate
water-tight Delaunay reconstructions from such samples [13, 6] to cre-
ate a tessellation.

The core of the Delaunay sampling requirements relies on a charac-
terization of surface geometry that depends on non-local information.
Given a smooth surface F ⊂ ℜ3, a sufficiently dense sampling P is
one such that for any point s ∈ F the Euclidean distance between s

and the closest sample point p ∈ P is no greater than ε times the local
feature size at s. Any discrete set of surface points P that meets this
requirement is an ε-sample of F . The current theoretical (3D) results
show ε = 0.06 is sufficient [2], however, empirical results indicate that
the actual bound might be looser, and several authors have conjectured
that ε = 0.5 may be closer to the necessary bound [4].

The definition of local feature size (lfs) is an important aspect of
these results and of the proposed algorithm. The lfs of a point s ∈ F
is defined as the distance from s to the nearest point on the medial
axis (MA) of F . The MA has been heavily studied in the literature
[22, 19] in the context of shape modeling, computational geometry,
and computer vision. Although the MA has several formal definitions
and many interesting and important characteristics, it is sufficient for
the proposed method to consider the MA of a surface as (the closure
of) the set of points M ⊂ℜ3 such that the nearest point on the surface
to m ∈ M (i.e. mins∈F |s−m|) is not unique. Alternatively, several
authors define the MA as the set of points where there exists a sphere
that does not intersect the surface and is tangent to the surface in more
than one location.

The relationships between the MA, local surface geometry, and
sampling requirements are important in several ways. First, the cotan-
gency definition implies that the lfs of s ∈ F is no greater than the
local radius of curvature at that point. The radius of curvature is then
an upper bound, as is the sampling condition, and is therefore not a
suitable proxy for the lfs . For instance, the feature size can be very
small on thinly separated, flat objects that have a very large radius of
curvature. Second, the lfs condition is necessary for establishing the
correct topology among an unorganized set of points. If the topology
is somehow known a priori (e.g. via continuity in an advancing front)
the sampling density could be much more sparse. However, one com-
mon use of a surface mesh is for the construction of a body fitting
tetrahedralization [1] where it is important that the triangles, which
form the faces of the corresponding tetrahedra, conform to the global
solid geometry.

Algorithms for constructing an ε-sampling of a surface F are not
immediately evident from the sampling theorems or mesh generation
algorithms. Although several related schemes propose methods for
sampling surfaces with less-strict or slightly different bounds [8, 9],
the ε-sampling requirement provides guarantees necessary for subse-
quent simulations due to the side effect of respecting local as well as
global object shape. Among the contributions of this paper is a prac-
tical scheme for generating sets of surface points that closely conform
to the ε-sampling requirements.

The proposed method uses a sizing field generated from geometric
information of F , the creation of which is described in subsequent sec-
tions, to control a system of dynamic particles which form the surface
point samples. Dynamic particle systems, first proposed for geometric
modeling by Witkin and Heckbert [44], rely on a set of markers that
are constrained by an implicit function and move based on a local po-
tential related to neighboring particle distances, resulting in even dis-
tributions across the surface. The particle interactions can be modified
to produce adaptive distributions by using compact and quasi-scale
invariant potential functions along with mechanisms for robustly con-
trolling particle densities [26, 27]. This paper combines these adap-



tive particles with a sizing field based on the lfs to generate surface
point samples which are tessellated by the Delaunay-based algorithm
TIGHT COCONE [13]. We discuss relevant quality measures for such
meshes and demonstrate the effectiveness of the algorithm relative to
these metrics.

3 MESH GENERATION WITH PARTICLE SYSTEMS

The goal of the proposed system is to generate nearly-regular triangu-
lar meshes of isosurfaces. By adaptively distributing a set of dynamic
particles such that their positions conform to an ε-sampling require-
ment, the particles can be used to generate a Delaunay surface mesh
that corresponds to the geometry and topology of the isosurface. To
achieve this goal, the proposed method consists of several steps: (1)
computation of a MA approximation to determine the local feature
size; (2) creation of a sizing field to specify the desired distances be-
tween particles; (3) adaptive distribution of particles across the isosur-
face; and (4) triangulation of particle positions to create a polygonal
reconstruction of the isosurface. Figure 1 depicts this pipeline.

The proposed system specifically targets volumetric data, such as
segmentations from MRI or CT scans. From the discretely sampled
data stored over a regular grid, we utilize smooth reconstruction fil-
ters to generate a continuous, differentiable implicit function F [28].
Specifically, a 43 cubic B-spline or Catmull-Rom spline is used for ap-
proximating or interpolating the function, respectively, while the first
and second derivatives of the cubic B-spline are used for computing
the gradient and Hessian. These combinations of filters are ideal for
applications that measure curvature values [21]. The geometric infor-
mation computed for the data (discussed in the following sections) is
also stored over a lattice and sampled using reconstruction kernels.

3.1 Local Feature Size

As described in Section 2, the lfs is the distance to the MA of a sur-
face. Accurate computation of the MA is a challenging research prob-
lem, and numerous approaches have been proposed for its solution.
One approach presented in the computer vision literature is to detect
discontinuities (i.e. shocks) in a distance transform of a surface. De-
tecting the shocks, and hence the MA approximation, in the distance
transform is numerically tricky due to the discontinuities in the deriva-
tives at these points. Siddiqi et al. [37] propose measuring the di-
vergence of the gradient of the distance transform, where high values
indicate a significant change in the field, and thus a MA point. Another
approach by Persson [31] fits local quadratics over the distance trans-
formation grid, looking for places where these functions intersect. A
set of heuristics then determine whether an intersection point should
be included in the MA approximation.

For this work we have developed a medial axis detection algorithm
for more general implicit surfaces which is moderately robust to free
parameters, gives subgrid accuracy, and does not require the thinning
or post-processing of similar methods [37]. This scheme relies on
the foot point method, which is the nearest point p on a surface to a
given point q, and can be found using gradient descent by the method
described in [17]. Here we consider only the MA proper, and not the
singular points where the MA terminates. The line segment defined p̄q
is perpendicular to the surface, and every point on p̄q has p as its foot
point. This line segment forms a characteristic, which is the path of a
surface point that moves inward/outward in the direction of the surface
normal (to within a sign difference). As we proceed from the surface
along an inward or outward characteristic, the foot point of each point
along that path remains the starting point for the characteristic until the
characteristic intersects the MA — once the characteristic intersects
the MA, the position of the foot point changes. The algorithm for
detecting the MA is as follows. For each point on the grid q find the
foot point p, then find the point q∗ along the characteristic (away from
the foot point) that intersects the current voxel (far face of the cube).
Find the footpoint p∗ associated with q∗. If the angle between the line
segments p̄q and ¯p∗q∗ is greater than some small threshold α , then the
segment ¯pp∗ crosses the MA. The position of the MA along ¯pp∗ can
be found by using a first-order (tangent plane) approximation to the

surface at the point p∗. We use cos(α) = 0.9 for all of the results in
this paper.

After constructing M, a lfs field λ (x) is created by finding the dis-
tance to the closest medial axis point m ∈ M at the grid nodes. For
efficiency, we restrict this field to the subset of grid nodes that bound
the isosurface. The λ field needs only to be a conservative estimate of
the distance to the true MA as lfs (and curvature, which will be dis-
cussed in the next section) provides an upper bound on the distance
between particles in the proposed system; anything less than, or equal
to, the true distance will drive the final distribution of particles to be
an ε-sampling.

The accuracy of the λ field fundamentally relies on the underlying
accuracy of the medial axis detection algorithm, which is itself a sam-
pling problem. Creating the medial axis requires a sampling of the
data field, with where those samples are chosen dictating the accuracy
of the medial axis detection. The problem thus cycles between choos-
ing samples to detect the medial axis, and using the detected medial
axis to determine where the samples should be to accurately capture
the true medial axis. For this work, we intentionally break the cycle
by relegating the accuracy of the system for determining the lfs, and
ultimately achieving a true ε-sampling of the surface, to that of the ac-
curacy of the underlying medial axis detection algorithm. As research
into medial axis detection progresses, the proposed sampling method
can make use of new algorithms to achieve more accurate results.

3.2 Sizing Field

The sizing field is the mechanism by which the particle system adapts
its distribution to meet an ε-sampling requirement. There are two ge-
ometric quantities, lfs and radius of curvature, and two parameters, ε
and δ , that govern the construction of the field.

To establish an initial sizing field h0(x), the λ field is compared to
the radius of curvature at each grid node in a narrow band around the
isosurface. The radius of curvature is calculated as 1/|κmax| — the
absolute value of the maximum curvature can be computed directly
from the Hessian of F [21]. The initial sizing field is given as:

h0(x) = C min(λ (x),1/|κmax(x)|) (1)

where C is a constant based on ε that is discussed and defined in the
following paragraphs. Including the radius of curvature in Equation
1 helps to ensure that small surface features that may not have been
captured in M appear in the sizing field construction.

Although h0 contains most of the core geometric information about
a surface necessary for describing an ε-sample, it is not suitable on its
own for regulating particle distances for two reason: first, the Delau-
nay sampling theory indicates that some fraction of the lfs is required
for topologically correct reconstructions; and second, to achieve high
quality triangles across the entire mesh, the gradient of the sizing field
must be limited to ensure smooth, gradual changes in triangle size.
These two characteristics are controlled by the user defined parame-
ters ε and δ , which modify h0 to create an (ε,δ )-sizing field h(x).

Multiplying h0 by twice the ε parameter, such that C = 2ε , causes
the sampling to be a fraction of local feature size, i.e. an ε-sampling.
The Delaunay sampling requirement [3] specifies ε for some point
on the surface other than the sample points, thus we include this im-
plied factor of two in C, and the literature indicates that ε = 0.5 may
be a loose upper bound for ε . The second parameter, δ , is used to
limit the gradient of h0 such that the values in the resulting field h
will not change faster than δ . Thus, δ dictates how quickly the edge
lengths of neighboring triangles can change — δ < ε will generally
produce well-shaped triangles. This limiting produces a δ -Lipschitz
field, an important property for smooth triangle gradation that limits
how quickly the field can change. To limit the rate of change of h over
its grid we use the following discrete operator, operating on a lattice
sampling of our field hi jk = h(x) at a grid node position x, which is
shown by Persson [31] to generate a δ -Lipschitz field:

hn+1
i jk = hn

i jk +∆t(min(0,δ −∆+
i jk)) (2)

where
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Fig. 2. Illustrative comparison of mesh quality and number of triangles
for varying values of ε and δ , the user defined parameters in Equations
1 and 2 respectively. The ε values vary down the columns while the
δ values vary across the rows. Smaller values of ε produce more ge-
ometrically accurate meshes, while smaller values of δ generate more
regular triangulations — smaller values of either parameter inherently
increases the overall number of triangles.

∆+
i jk = [ max(D−x hn

i jk,0)2 +min(D+
x hn

i jk,0)2 +

max(D−y hn
i jk,0)2 +min(D+

y hn
i jk,0)2 +

max(D−z hn
i jk,0)2 +min(D+

z hn
i jk,0)2 ]1/2 (3)

and where D+ and D− are the forward and backward difference oper-
ators respectively with subscripts denoting the axes along which they
are operating. In our implementation of the system we consider the
limiting of the gradient to have converged when the maximum relative
change of any grid node is less than 10−5.

While the lfs function λ is 1−Lipschitz [32], the inclusion of the
radius of curvature causes h0 to lose this property. We have found,
however, that the initial sizing field h0 is nearly 1−Lipschitz, produc-
ing a final sizing field h which is min(2ε,δ )-Lipschitz. We have ex-
perimented with a range of values for both ε and δ , and present an
illustrative example in Figure 2 to provide intuition on each parame-
ter’s role in the final mesh quality. This example visually emphasizes
the balance between geometric accuracy, the number of triangles, and
triangle quality. The rounded box is a level-set of a sampled analytic
distance transform of box, where the faces are planar, the edges are
cylindrical, and the corners are spherical. The surface is reconstructed
using a Catmull-Rom spline kernel and the first and second derivative
of a cubic B-spline.

3.3 Distributing Particles

Using the particle system framework proposed in [27], a set of dy-
namic particles can be controlled by h such that their final distribution
meets the sampling requirements for F . To do this, we initialize the
system with a set of particles, the positions of which are determined

from a marching cubes triangulation to ensure that disconnected parts
of the isosurface are seeded with particles. The particles are then pro-
jected onto F using a Newton-Raphson gradient descent method. Once
on the surface, each particle is associated with an individual potential
function which induces inter-particle forces that push them towards
lower, local energy states. To control the sampling density, we scale
the distances between particles — which determines the magnitude of
the inter-particle forces — by the value of h at each particle’s position.
The distance between particles pi and p j becomes:

di j = αi j|(xi−x j)|= d ji (4)

where αi j is defined by h (evaluated at particle positions xi and x j

using trilinear reconstruction kernels within a voxel) as follows:

αi j = α ji =
β

min(hi,h j)
(5)

with β = 0.5/cos( π
6 ). The particles are then iteratively moved to

lower local energy states until the system reaches an equilibrium.
Equation 5 scales the effective distance between particles based on

an ideal hexagonal packing across a flat surface where the region of in-
fluence of a particle ends at the closest two-ring neighbors. The value
of β is derived from this ideal packing, and allows for a population
control mechanism to be defined that adds and removes particles based
on their energy, driving the system towards an ideal packing. Because
h0 establishes an upper bound on the allowed distance between parti-
cles for meeting an ε-sampling requirement, using the minimum sizing
field value of any pair of particles establishes a conservative sampling,
as do the convex, linear interpolation kernels that reconstruct h at ar-
bitrary particle locations.

There is, however, a caveat to producing an ε-particle sampling.
The particle system uses Euclidean distances to compute inter-particle
forces and energies, as opposed to the more accurate (and computa-
tionally expensive) geodesic distance. The distance approximation
causes particles in a two-ring neighborhood to become influential,
adversely effecting the population-control mechanism for obtaining
ideal neighborhood packings. This artifact, however, is bounded by
ε , which allows for a contraction factor g to be introduced to the sys-
tem to counter-act the effects. Figure 3 shows the distance contraction
for particles equally spaced across a circle. The distance between each
adjacent particle is d — the distance between p0 and p2, however, is
not 2d as the ideal packing model assumes. Instead, it is:

D = 2d

(

1−
(dκ)2

4

)1/2

. (6)

In the proposed system, d ≤ ε/κ because the lfs is bounded from
above by the radius of curvature. Thus, we can bound the contraction
parameter, g, as:

1≥ g≥

(

1−
ε2

4

)1/2

. (7)

As ε goes to zero, g approaches one because the surface becomes
locally more and more planar as the distance between particles shrinks.
These bounds on g attest that the contraction effect cannot get arbitrar-
ily worse as the surface features become smaller; the worst case is
bounded by ε .

To counteract the contraction of distance to neighboring particles,
we inversely scale the sizing field as h← h/g. We empirically deter-
mined a value of g by observing histograms of the ratio of triangle
edge lengths to the average of h at each edge’s vertices. Over a range
of ε and δ values for a variety of data sets the shape of the histograms
were visually identical except for the tails, which contain a relatively
small number of outliers — an example of one histogram is shown in
Figure 3. Based on our observations, we determined a conservative
estimate of g to be 1.5. The inclusion of g creates a final mesh where
the length of virtually every edge is at most 2εh0. These results are
detailed in Section 4.
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Fig. 3. The effects of curvature cause the two-ring neighboring particles
to become closer than 2d (left). This effect is bounded by ε, which
allows for a scaling parameter to be introduced into the system. We
empirically determined this value by studying histograms of the triangle
edge lengths versus h, such as that of the pelvis reconstruction (right).

Table 1. Details of each data set, including size of the volume, values for
ε and δ , minutes required to distribute the particle system, and resulting
number of mesh vertices and triangles.

Data Volume ε ,δ Time Vertices Triangles

Size (mins)

brain 149x188x148 0.5, 0.3 41 91702 182188

pelvis 271x390x282 0.75, 0.5 1 4992 9984

skull 256x256x115 0.5, 0.3 232 212188 424588

vessel 265x265x171 0.5, 0.3 280 287990 576493

3.4 Triangulation

To triangulate a distribution of particles, we use the water-tight Delau-
nay triangulation method TIGHT COCONE [13] – a free version of
the software is available from the author’s website. TIGHT COCONE
first builds an initial Delaunay triangulation of the input point set. A
manifold surface is then extracted from all the triangles that intersect
a thickened surface built from the approximation of the points’ nor-
mal vectors. Where the normals cannot be faithfully approximated,
holes appear in the extracted mesh. TIGHT COCONE applies a final
selection criteria to the original triangulation to fill in these holes.

4 RESULTS AND DISCUSSION

In this section we present results from the proposed system for gen-
erating isosurface meshes of a variety of biological data sets. The
first two tessellations, shown in Figures 6 and 7, are of a pelvis and
brain generated from binary segmentations that have been smoothed
with a Gaussian kernel (σ = 1.5). Figure 8 illustrates a skull extracted
from gray-scale CT data, and Figure 9 depicts vasculature represented
by the zero-set of a distance transform generated by an anisotropic
smoothing algorithm [29]. All four surfaces are reconstructed with
approximating cubic B-spline kernels.

The proposed method was run on a P4 3.2GHz CPU with 2.0Gb
of memory. The generation of the medial axes and the λ grids took
on average about an hour for each data set while limiting the gradi-
ent field of h0 to generate h required several minutes. Run times to
distribute the particle systems, along with the resulting mesh dimen-
sions are presented in Table 1. As mentioned in Section 3.4, we use
TIGHT COCONE [13] to triangulate the particle distributions — the
tessellations required on the order of several minutes.

The stated goal for this work is the generation of isosurface meshes
suitable for simulations and the interpolation of data. To measure the
quality of our results for these purposes we draw upon ideas estab-
lished in the finite element literature which characterize the role of
mesh quality in the simulation accuracy [18]. Here, we briefly dis-
cuss the interplay between geometric accuracy and the error of a finite
element solution computed over a mesh.

Given a domain Ω and a partial differential equation (PDE) that
operates on a solution u that lives over Ω, the standard finite element
method attempts to construct a geometric approximation Ω̃ = T (Ω)
consisting of a tessellation of polygonal shapes (e.g. triangles and
quadrilaterals for 2D surfaces) of the domain Ω, and to build an ap-

proximating function space Ṽ consisting of piece-wise linear func-
tions based upon the tessellation [18]. Building on these two things,
the goal of a finite element analysis is to find an approximation ũ ∈ Ṽ

that satisfies the PDE operator. The details of how this is accomplished
are beyond the scope of this work. The important points, however, are
that a finite element analysis must balance geometric error and approx-
imation error while respecting stability constraints (e.g. as discussed
by Babuska and Aziz [7]), and that these errors are connected through
the tessellation that is generated. The space of functions from which ũ
is generated depends on the type of elements that exist in Ω̃, thus the
quality of the solution approximation is not only related to the accu-
racy of Ω̃ for approximating Ω, but also to the geometric properties
of the mesh elements. In the L2 norm, the accuracy of ũ is bounded
by a constant that includes angles of triangular elements. Babuska
and Aziz [7] show that if the largest triangle angle is bounded away
from 180◦, the finite element method converges as the triangle size
decreases. Shewchuk [36] notes that small angles are preferable over
large angles, so long as the largest angles are not too large, and ex-
tends these results to provide functions that guide mesh generation
and refinement algorithms toward the production of high quality finite
element tessellations. A common quality metric used in the literature
for measuring this relationship of element angles is the ratio of the
radii of the inscribed circle to the circumscribing circle of a triangle,
rin/rcirc. This metric penalizes triangles containing small angles, with
the worst ratios going to triangles that also contain a large angle.

The proposed system addresses both aspects of geometric quality
posed by the finite element method. First, the accuracy of the tessella-
tion for capturing the topology of the domain is guaranteed by the De-
launay reconstruction algorithms for ε-distributions of particles. We
quantify the ability of the proposed system to meet this requirement by
computing the ratio of triangle edge lengths versus the average of h0 at
the edge vertices. In Figure 4 we present histograms of the results for
each data set. The pelvis mesh contains no edges larger than h0 dic-
tates, and virtually every edge in the other three tessellations meets the
sampling requirements defined in h0 — less than 0.004% of the trian-
gles in the brain and skull meshes, and less than 0.008% in the vessel
mesh, contain an edge that falls above the required sampling length.
We note that while the particles reliably meet the sampling require-
ments of h0, the correctness of these requirements are ultimately re-
lated to the accuracy of the medial axis detection method, as discussed
in Section 3.1. These results indicate that the proposed particle-based
method is a practical scheme for generating an ε-sample of an isosur-
face that relates point density solely to the geometry of the surface,
and not to the quality of the tessellation which is instead achieved im-
plicitly by the low-energy configuration of particles.

brain pelvis

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

skull vessel

Fig. 4. The edge length versus h ratios for the four data sets. Values
greater than 1.0 were encountered at a frequency of less than 0.01% in
the brain, skull, and vessel meshes.



Table 2. The minimum and average radius ratios for each data set
(min/avg) using the proposed particle-based method (ps), an advancing
front scheme (af), and a modified marching cubes algorithm (mc).

pelvis brain skull vessel

ps 0.40/0.92 0.18/0.94 0.092/0.94 0.0195/0.94

af 0.23/0.94 0.02/0.93 0.006/0.93 0.0007/0.94

mc 0.00/0.66 0.00/0.67 0.000/0.66 0.0000/0.66

The second finite element requirement for generating high quality
tessellations is the production of nearly regular triangles. We compute
the radius ratios for each data set to measure the quality of the tri-
angles in the resulting meshes — Figure 5 displays these histograms.
We present the average radius ratios for each data set in Table 2, along
with the minimum (worst) ratio which is important for determining the
condition number in a finite element simulation. We also include the
radius ratios for meshes generated using a marching cubes [25] algo-
rithm that has been modified to use the same reconstruction kernels as
those used in the particle system, and from an advancing front algo-
rithm [33] that has been supplied to us by the authors. The data indi-
cates that the proposed method generates average radius ratios that are
nearly identical to the advancing front technique, but consistently pro-
duces much better minimum ratios than either alternative triangulation
method. The proposed system is able to (globally) produce very reg-
ular triangulations due to the natural, low energy, hexagonal packing
of particles, avoiding the problems associated with grid-based methods
(i.e. restriction of vertices to grid edges) or advancing front techniques
(i.e. detecting and stitching merging fronts) — poorly shaped triangles
due to these problems are shown in Figure 8.

brain pelvis

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

skull vessel

Fig. 5. The radius ratios for the four data sets, all with an average ratio
of ∼ 0.94.

A third metric for measuring the quality of triangulations is a mea-
sure of the vertex valence of a mesh. For applications such as mesh
compression [40] and subdivision surfaces [24] the regularity of the
vertex valences across a mesh is important for efficient and accurate
results. Regular triangulations tend toward a valence of six for most
vertices, similar to the hexagonal properties of particle packing. Ver-
tex valence also indirectly indicates the tendencies of a mesh to contain
large and small angles. In Table 3 we summarize the valences of the
vertices in our triangulations. The meshes indicate a good affinity for
valence-six vertices (63.275%, compared with 44.15% for marching
cubes and 71.75% for advancing front), with only a small fraction of
vertices exhibiting valences greater than seven or less than five (0.7%,
compared with 12.86% for marching cubes and 0.95% for advanc-
ing front). These number show that the particle-based method out-
performs marching cubes while also containing a smaller percentage
of extreme valences than the advancing front technique.

Table 3. Vertex valences for each data set, given as a percentage of the
total number of vertices.

< 5 5 6 7 > 7

brain 0.1 17.2 65.3 17.1 0.3

pelvis 0.3 22.3 56.2 20.8 0.4

skull 0.1 16.8 66.0 18.0 0.2

vessel 0.3 16.7 65.6 16.9 0.5

Fig. 6. A tessellation of a pelvis segmentation.

5 CONCLUSION

In this paper we propose a particle-based method for generating high
quality tessellations of biological data sets. By creating a sizing field to
dictate the density of the particle distributions, this method produces
sets of points that can meet the sampling requirements of Delaunay
surface reconstruction algorithms for generating topologically accu-
rate tessellations, the accuracy of which depends on the correctness
of the underlying medial axis detection algorithm. We present results
from a variety of data sets that indicate the proposed method can reli-
ably produce meshes that closely capture isosurface geometry, as well
as generate very regular triangulations. We also compare the method
against other tessellation techniques and show that the particle-based
scheme generates consistently better minimum radius ratios, an im-
portant characteristic for reducing geometric error in finite element
simulations.

Practically, the proposed method relies on a lower bound for the lfs
to ensure that the number of particles does not blow up. In general,
however, implicit functions can have arbitrary large curvature, which
could result in very high densities of points around small features. The
curvature of the implicit surface can be systematically controlled with
level-set-based deformations [38, 35], and in practice we imagine this
technique would be applied to binary masks which are then smoothed
by the reconstruction filter. By controlling the local configurations of
binary voxels, e.g. through mathematical morphology operations, the
curvature of the the reconstructed isosurface, and thus the maximum
density of particles, can be controllably bounded — this is an area for
further investigation.

The creation of high quality surface tessellations also is an interest-
ing starting point for the generation of solid tetrahedralizations. Nu-
merous volumetric mesh generators exist that can build a solid mesh
from a surface triangulation, many of them based on Delaunay meth-
ods. We are interested in applying results from the proposed method
to tetrahedralization schemes.
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Fig. 7. Particles on the brain and the resulting tessellation. The surface is a reconstruction of a white-matter segmentation.

particle system advancing front marching cubes

Fig. 8. The skull mesh is generated by reconstructing a level-set of a gray-scale CT image. Close-ups are from triangulations generated using the
proposed particle system method, an advancing front technique [33], and a marching cubes algorithm.

Fig. 9. The vessel mesh represents the zero-set of a distance transform generated using an anisotropic smoothing algorithm [29].


